Forum Kimler Online
Go Back   Ezberim > Eğitim & Öğretim > Eğitim
Kayıt ol Forumları Okundu Kabul Et


Matematiğin Tarihi

Eğitim & Öğretim kategorisinde ve Eğitim forumunda bulunan Matematiğin Tarihi konusunu görüntülemektesiniz.
Bu yazıda sizlere, Matematiğin nasıl başladığı ve hangi aşamalardan geçerek günümüze geldiğini anlatmaya çalışacağım. Bir Matematik tarihcisi olmadığımı, anlatacaklarımın okuduklarımın ...






Yeni Konu aç Cevapla
 
Seçenekler
  #1  
Alt 04-06-2007, 20:21
 
Standart Matematiğin Tarihi

"Sponsorlu Bağlantılar"

 


Bu yazıda sizlere, Matematiğin nasıl başladığı ve hangi aşamalardan geçerek günümüze geldiğini anlatmaya çalışacağım. Bir Matematik tarihcisi olmadığımı, anlatacaklarımın okuduklarımın bir sentezi olduğunu, orjinal çalışmaları inceliyerek hazırlanmış bir konuşma olmadığını belirtmek isterim.

Giriş. Matematik insanlık tarihinin en eski bilimlerinden biridir. Çok eskiden, Matematik sayıların ve şekillerin ilmi olarak tanımlanırdı. Matematik de, diğer bilim dalları gibi, geçen zaman içinde büyük bir gelişme gösterdi; artık onu bir kaç cümle ile tanımlamak mümkün değildir. Şimdi söyleyeceklerim, matematiği tanımlamaktan çok, onun çeşitli yönlerini vurgulayan sözler olacaktır.
Matematik bir yönüyle, resim ve müzik gibi bir sanattır. Matematikçilerin büyük çoğunluğu onu bir sanat olarak icra ederler. Bu açıdan bakınca, yapılan bir işin, geliştirilen bir teorinin, matematik dışında şu ya da bu işe yaraması onları pek ilgilendirmez. Onlar için önemli olan, yapılan işin derinliği, kullanılan yöntemlerin yeniliği, estetik değeri ve matematiğin kendi içinde bir işe yaramasıdır.
Matematik, başka bir yönüyle, bir dildir. Eğer bilimin gayesi evreni; evrende olan her şeyi anlamak, onlara hükmetmek ve yönlendirmek ise, bunun için tabiatın kitabını okuyabilmemiz gerekir. Tabiatın kitabı ise, Galilenin çok atıf alan sözleri ile, matematik dilinde yazılmıştır; onun harfleri geometrinin şekilleridir. Bunları anlamak ve yorumlayabilmek için matematik dilini bilmemiz gerekir.
Matematik, başka bir yönüyle de satranç gibi entelektüel bir oyundur. Kimi matematikçiler de ona bir oyun gözüyle bakarlar.
Matematik, kullanıcısı için ise sadece bir araçtır ; ya da yaptıklarını ifade edebildikleri bir dildir.
Matematiğin ne olduğunu, onun içine girdikten sonra, bilgimiz ölçüsünde ve ilgimiz yönünde, anlar ve algılarız. Artık matematik her hangi bir insan hükmedebileceği boyutların çok çok ötesindedir. Bu nedenle, matematikle uğraşan bizlerin, matematikten anladığımız ve onu algıladığımızın, file dokunan körün, fili anladığı ve onu algıladığından daha fazla olduğunu hiç sanmıyorum.
Matematik sözcüğü, ilk kez, M.Ö. 550 lerde, Pisagor okulu üyeleri tarafından kullanılmıştır. Yazılı literatüre girmesi, M.Ö. 380 lerde Platon la olmuştur. Kelime manası “öğrenilmesi gereken şey”, yani, bilgidir. Bu tarihleden önceki yıllarda, matematik kelimesi yerine, yer ölçümü manasına gelen, geometri yada eski dillerde ona eşdeğer olan sözcükler kullanılıyordu.

Matematiğin nerede ve nasıl başladığı hakkında da kesin bir şey söylemek mümkün değildir. Dayanak olarak yorum gerektiren arkeolojik bulguları değilde, yorum gerektirmeyecek kadar açık yazılı belgeleri alırsak, matematiğin M.Ö. 3000 –2000 yılları arasında Mısır ve Mezopotamyada başladığını söyleyebiliriz. Heredota ( M.Ö. 485-415) göre, matematik Mısırda başlamıştır. Bildiğiniz gibi, Mısır topraklarının %97 si tarıma elverişli değildir; Mısıra hayat veren, Nil deltasını oluşturan %3 lük kısımdır. Bu nedenle, bu topraklar son derece değerlidir. Oysa, her sene yaşanan Nil nehrinin neden olduğu taşkınlar sonuncunda, toprak sahiplerinin arazilerinin hudutları belirsizleşmektedir. Toprak sahipleri de sahip oldukları toprakla orantılı olarak vergi ödedikleri için, her taşkından sonra, devletin bu işlerle görevli “geometricileri” gelip, gerekli ölçümleri yapıp, toprak sahiplerine bir önceki yılda sahip oldukları toprak kadar toprak vermeleri gerekmektedir. Heredot geometrinin bu ölçüm ve hesapların sonucu olarak oluşmaya başladığını söylemektedir.
Matematiğin doğuşu hakkında ikinci bir görüş de, Aristo (M.Ö. 384-322) tarafından ileri sürülen şu görüştür. Aristo ya göre de matematik Mısırda doğmuştur. Ama Nil taşmalarının neden olduğu ölçme-hesaplama ihtiyacından değil, din adamlarının, rahiplerin can sıkıntısından doğmuştur. O tarihlerde, Mısır gibi ülkelerin tek entelektüel sınıfı rahip sınıfıdır. Bu sınıfın geçimi halk veya devlet tarafından sağlandığı için, entelektüel uğraşılara verecek çok zamanları olmaktadır. Kendilerini meşgul etmek için, başkalarının satranç, briç, go,... gibi oyunları içat ettikleri gibi onlar da geometri ve aritmetiği, yani o zamanın matematiğini icat etmişlerdir.

Bu her iki görüş de doğru olabilir; rahipler geometricilerin işini kolaylaştırmak istemiş, yada dağıtımın adil yapıldığını kontrol için, üçgen, yamuk gibi bazı geometrik şekillerdeki arazilerin alanlarının nasıl hesaplanacağını bulmuş ve bu şekilde geometrinin doğmasına neden olmuş da olabilirler.

Matematiğin yazılı tarihini beş döneme ayıracağız. İlk dönem Mısır ve Mezopotamya dönemi olacak; bu dönem M.Ö. 2500 li yıllarla M.Ö. 500 lü yıllar arasında kalan 1500-2000 yıllık bir zaman dilimini kapsayacak. İkinci dönem, M.Ö. 500-M.S. 500 yılları arasında kalan ve Yunan Matematiği dönemi olarak bilinen 1000 yıllık bir zaman dilimini kapsayacak. Üçüncü dönem, M.S. 500 lerden kalkülüsün başlangıcına kadar olan ve esasta Hind, İslam ve Rönesans dönemi Avrupa matematiğini kapsayacak olan 1200 yıllık bir zaman dilimini kapsayacak. Dördüncü dönem, 1700-1900 yılları arasında kalan, matematiğin altın çağı olarak bilinen, klasik matematik dönemini kapsayacak. 1900 lerin başından günümüze uzanan, ve modern matematik çağı olarak adlandırılan, içinde bulunduğumuz dönem de beşinci dönem olacak. Her dönemi ayrı -ayrı ele alıp, eldeki kaynaklar çerçevesinde, o dönemdeki matematiğin gelişimi, katkı yapan matematikçiler, matematiğin toplum hayatındaki yeri ve o dönem matematiğinin temel özellikler hakkında bilgi vermeye çalışacağım.

1-Mısır ve Mezopotamya Matematiği. İlk döneme Mısır matematiği ile başlayacağız. Eski Mısır matematiği ve genelde de Mısır tarihi ile ilgili yazılı belge- arkolojik eser kalıntılarını kastetmiyorum- yok denecek kadar azdır. Bunun temel iki nedeni vardır. Birincisi, eski Mısırlıların yazıyı papirüslere yazmaları; ikinci nedeni ise İskenderiye kütüphanelerin geçirdikleri 3 büyük yangın sonucunda, ki bu yangınların sonuncusu 641 de Mısırın Müslümanlar tarafından fethi sırasında olmuştur, yazılı belgelerin yok olmuş olmasıdır. Papirüs, Nil deltasında büyüyen, kırmızımtırak renkte, saz türü bir bitkinin, ortalama 15-25 metre uzunluğunda ve 30-50 santim genişliğinde olan yapraklarıdır. Bu yapraklar kesilip, birleştirilip, preslendikten ve bazı basit işlemlerden geçirildikten sonra, kağıt yerine yazı yazmak için kullanılırmış. “Paper” , “papier” gibi batı dillerindeki kağıt karşılığı sözcükler, papirüs sözcüğünden türetilmiştir. Bir papirüsün ortalama ömrü 300 yıldır; 300 yıl sonra, nem, ısı ve benzeri nedenlerle, pul-pul olup dökülmektedir.
Günümüze, o çağlarda Mısır daki matematikle ilgili, istisnai şartlar altında saklandığı anlaşılan, iki papirüs gelmiştir. Mısır matematiği hakkındaki bilgimizin ana kaynakları bu iki papirüstür. Bu papirüslerden ilki, Ahmes ( ya da Rhind ) papirüsü olarak bilinen, 6 metre uzunluğunda ve 35 cm kadar genişliğinde olan bir papirüstür. Bu papirüsün, M.Ö. 1850 li yıllarda yazılmış olan bir pürüsün, M.Ö. 1650 lerde Ahmes isimli bir “matematikçi” tarafından yazılan bir kopyasıdır. Bu papirüsü 1850 lerde İrlandalı antikacı H. Rhind satın almış, şimdi British museum dadır. Bu papirüs, matematik öğretmek gayesiyle yazılmış bir kitaptır. Giriş kısmında, kesirli sayılarla işlemleri öğretmek gayesiyle verilen bir-kaç alıştırmadan sonra, çözümleriyle 87 soru verilmektedir. Bu sorular, paylaşım hesabı, faiz hesabı veya bazı geometrik şekillerin alanını bulmak gibi, insanların günlük hayatta karşılaşabileceği türden sorulardır. Bu az-çok bizim 8. sınıf matematiği düzeyinde bir matematiktir.
Moskova papirüsü diye bilinen ve şimdi Moskova müzesinde olan ikinci papirüs de M.Ö. 1600 lerde yazılmış bir kitapçıktır. Bu papirüs 25 soru içermektedir. Bu sorular, ikisi hariç, Ahmes papirüsündeki sorular türündendir. Diğer iki soruya gelince, onlardan biri, bir düzlemle kesilen küre parçasının hacmi ve yüzeyinin alanının hesaplanmasıdır. Diğeri ise, yine bir düzlemle kesilen bir piramidin hacminin bulunması sorusudur. Her iki soru da doğru olarak çözülmüştür. Bu iki soru Mısır matematiğinin zirvesi olarak kabul edilmektedir. Mısırlılar, dairenin alanının çapına orantılı olduğunun farkına varmışlar ve pi sayısını 4x(8/9) un karesi, yani 256/81=3,16 olarak bulmuşlardır. Mısır matematiğini 2000 yıl boyunca bu düzeyde kaldığı ve kayda değer bir ilerleme göstermediği anlaşılmaktadır.

Mısır sayı sistemi, on tabanına göredir ve rakam sistemlerinin yazımı ve kullanımı Romen rakamlarının yazım ve kullanımı gibidir. Bu rakamlarla hesap yapmanın çok zor olduğu, Romen rakamlarıyla hesap yapmayı deneyen herkesin kolayca göreceği gibi, açıktır. Mısır matematiğinin gelişmemesinin bir nedeni bu olabilir.

Mezopotamyada yaşamış medeniyetlerden (Sümerler, Akatlar, Babiller, Kaldeyenler, Asurlar, Urlar, Huriler,...; fetihler nedeniyle, bir zaman Hititler, Persler,...) zamanımıza, Mısırdan kalandan bin kat daha fazla yazılı belge kalmıştır. Bunun nedeni, Mezopotamyalıların yazı aracı olarak kil tabletleri kullanmalarıdır. Pişirilen yada güneşte iyice kurutulan bir kil tabletin ömrü sonsuz denecek kadar uzundur. Yapılan kazılarda yarım milyondan fazla tablet bulunmuştur. Bu tabletlerin önemli bir kısmı İstanbul arkeoloji müzesindedir. Diğerleri de dünyanın çeşitli - Berlin, Moskova, British, Louvre, Yel, Colombia ve Pensilvanya- müzelerindedir. Bu tabletlerin, şimdiye kadar incelenmiş olanlarının içinde, beş yüz kadarında matematiğe rastlanmıştır. Bu bölgede yaşamış medeniyetlerin matematiği hakkında bilgimiz bu tabletlerden gelmektedir.
Bu tabletlerden anlaşılan, Mezopotamyada matematik, Mısır matematiğinden daha ileridir; Mezopotamyalılar lise iki düzeyinde bir matematik bilgisine sahiptirler. Mısırlıların bildikleri matematiği bildikleri gibi, ikinci dereceden bazı polinomların köklerini bulmasını, iki bilinmeyenli iki denklemden oluşan bir sistemi çözmesini de biliyorlar. Şunu söylemem gerekir ki, o zamanlarda henüz negatif ve irrasyonel sayılar bilinmemektedir. Bu nedenle ikinci dereceden her polinomun köklerini bulmaları mümkün değildir. Mezopotamyalılar, daha sonra Pisagor teoremi olarak adlandırılacak olan teoremi de biliyorlardı. Pi sayısını karesi 10 olan bir sayı olarak bilmekteler. Daha sonraları 3.15 olarak da kullanmışlardır.

Mezopotamyalıların sayı sistemi 60 tabanlı bir sayı sistemidir. Bu sayı sistemi günümüzde de, denizcilik ve astronomi de kullanılmaktadır. Bizim sayı sisteminde 10 ve 10 nun kuvvetlerini kullandığımız ve sayıları buna göre basamaklandırdığımız gibi, onlar da sayıları 60 ve 60 ın kuvvetlerine göre basamaklandırmaktadırlar. Bu sayı sisteminin en önemli özelliği basamaklı, yani konumlu, bir sayı sistemi olmasıdır. Saatin 60 dakika, günün 24 saat ve dairenin 360 dereceye bölünmüş olması bize bu sayı sisteminden kalan miraslardan sadece bir kaçıdır.
Mezopotamyalıların 60 tabanlı bir sayı sistemi seçmiş olmalarının nedeni bilinmemektedir. Bu konuda ileri sürülen belli-başlı üç görüş ya da varsayım şunlardır: 1). 60 sayısının 2,3,4,5,6,10,12,20,30 gibi çok sayıda bölenleri olması onu günlük hayatta çok kullanışlı kılıyordu; bu nedenle 60 tabanlı bir sayı sistemi seçmişlerdir. 2). 60 tabanlı sayı sisteminin seçiminden önce, o bölgede 10 ve 12 tabanlı sayı sistemlerini kullanan medeniyetler olmuştur. Daha sonra gelen bir medeniyet, daha önceki ölçü birimleriyle uyum sağlamak için, 10 ile 12 nin en küçük ortak katı olan 60 ı sayı sistemlerinin tabanı olarak almışlardır. 3). 60 tabanlı sayı sisteminin seçimi, bir eldeki, baş parmak hariç, dört parmakta bulunan üç eklem yerini o zamanın insanları sayı saymak için kullanıyorlardı; 4 parmakta 12 eklem yeri olduğu ve bir elde de beş parmak olduğu için bu iki sayının çarpımı olan 60 ı sayı sistemlerinin tabanı olarak almışlardır. Bu konuda görüşler bunlardır. Eğer bir gün 60 sayısının niçin seçildiğini izah eden bir tablet bulunursa o zaman gerçek anlaşılacaktır.

Bu dönemin matematiğini toptan değerlendirecek olursak, temel özellikleri şunlardır: a) Bu dönem matematiğinde teorem, formül ve ispat yoktur. Bulgular emprik veya deneysel; işlemler sayısaldır. Bunun böyle olması kaçınılmazdır zira o dönemde matematik, simgesel olarak değil, sözel olarak ifade edilmekte. Sözel ve sayısal matematikte ( geometrik çizimler hariç) formel ispat vermek olanaksız olmasa da, kolay değildir. b) Bu dönemin matematiği zanaat düzeyinde bir matematiktir; matematik “matematik için matematik “ anlayışıyla değil, günlük hayatın ihtiyaçları için, yani “halk için matematik “ anlayışıyla yapılmaktadır. Matematiğin kullanım alanları ise, zaman-takvim belirlemek, muhasebe işleri ve günlük hayatın, inşaat, miras dağıtımı gibi diğer işleridir. Dini ve milli günlerin, ibadet saatlerinin, deniz yolculuklarının ve tarıma uygun dönemlerin belirlenmesi için, bugün olduğu gibi, eski zamanlarda da doğru bir takvim yapmak son derece önemli bir iş olmuştur. Bu da ancak uzun süreli gökyüzü gözlemleri, ölçüm ve hesapla mümkündür. Bu matematiğin kullanım alanlarından en önemlisi ve matematiğin gelişmesine neden olan temel ihtiyaçlardan biridir. Devlet gelir-giderinin hesaplanması, mal varlıklarının tespit, kayıt ve muhasebesi de devlet düzeni için elzem olan ve matematiğin kullanıldığı diğer bir alandır. Bu da matematiğin öğretilmesine ve dolaysıyla gelişmesine neden olan ikinci bir temel ihtiyaç ve etmendir.

Bu dönem matematiği, bu bölge ülkelerinin kültürel varlıklarının, Pers istilası sonucu son bulmasıyla son bulur.

2- Yunan Matematiği. M.Ö. 600 lü yıllar Perslerin orta doğuya hakim olmaya başladığı yıllardır. M.Ö. 550 li yıllara gelindiğinde, Persler, Anadolu, Mısır dahil, bütün orta doğunun tek hakimidirler. Persler, M.Ö.500-480 arasında Yunanistana üç sefer düzenlerler; 480 de Atinayı ele geçirerek yakarlar ama, bir yıl sonra, 479 da Yunanlılar Persleri Yunanistandan atarlar. Bu tarih, M.Ö. 479, Yunan medeniyetinin başlangıcı olarak kabul edilen tarihtir.
Bu tarih, bilimde, sanatta edebiyatta çok parlak bir dönemin başlangıcı olan bir tarihtir. Yunan matematiği gerçekte bu dönemden daha önce başlamıştır. İki kişi, Tales (M.Ö. 624-547) ve Pisagor ( M.Ö.569-475), Yunan matematiğinin babası olarak kabul edilir. Tales Milet (Aydın) de doğmuştur. Mısıra gittiği, bir süre orada kaldığı ve Mısırda geometri öğrendiği bilinmektedir. Mısırda iken, büyük piramidin gölgesinin uzunluğunu ölçerek, bu sayıyı, kendi boyunun o andaki gölgesinin boyuna olan oranıyla çarpmak suretiyle, büyük piramidin yüksekliğini hesapladığı kitaplarda anlatıla gelmektedir. Tales Milete döndükten sonra, öğrendiklerini öğretmek gayesiyle, kendi etrafında bir grup oluşturarak onlara geometri öğretmiştir. Matematiğe – deneysel olarak doğrulamaya dayanmayan-akıl yürütmeye dayalı, soyut ispatın Talesle girdiği kabul edilir. Ayrıca, Tales insanlık tarihinin ilk filozofu olarakta kabul edilen kişidir.
Yunan matematiğinin diğer babası olan Pisagor Samos (Sisam) adasında doğmuştur. Pisagorun bir süre Talesin yanında kaldığı, onun tavsiyelerine uyarak Mısıra gittiği, orada geometri öğrendiği, Mısır tapınaklarını ziyaret edip, dini bilgiler edindiği, ve Mısırın Persler tarafından işgali sırasında, Perslere esir düşerek Babile götürüldüğü rivayet edilmektedir. Babilde bulunduğu 5 yıl boyunca matematik, müzik ve dini bilgiler öğrenmiş, Samosa döndükten sonra bir okul oluşturarak etrafına topladığı insanlara öğrendiklerini öğretmeye çalışmıştır. Siyasi nedenlerle, M.Ö. 518 Samosdan ayrılarak, güney Italyaya, Crotone şehrine yerleşmiş ve orada yarı mistik-yarı bilimsel, tarikat vari bir okul oluşturmuştur. Bu okulun, “matematikoi” denen üst düzey kişileri beraber yaşamaktalar ve birbirlerine yeminle bağlıdırlar. İkinci gurup okula devam eden öğrencilerden oluşmaktadır. Pisagor okulu sayı kültü üzerine kuruludur. Onlara göre, her şey sayılara indirgenebilir; sayılar arasında tesadüfi olamayacak kadar mükemmel bir harmoni vardır ve harmoni ilahi harmoninin yansımasıdır. O gün için bilinen sayılar 1,2,3,... gibi çokluk belirten tam sayılar; ve ½, ¾,...gibi parçanın bir bütüne oranını belirten kesirli sayılardır.
Pisagor teoremi olarak bilinen ( bir dik üçgenin dik kenarlarının karesin toplamı hipotenüsün karesine eşittir) teorem ile irrasyonel sayıların ortaya çıkması Pisagor ekolünü derin bir krize sokmuştur. İrrasyonel sayıların keşfi matematiğin ilk önemli krizidir.
Pisagor okulunun üyelerinin bir çoğu Cylon isimli bir yobazın yönettiği bir baskın sonuncu katledilmişlerdir. Pisagor hayatını kurtarmıştır ama bir kaç sene sonra o da ölmüştür. Pisagorun düşünceleri, Pisagor ekolu, şu veya bu isim altında uzun yıllar yaşamıştır. Bu bilgilerden de anlaşılacağı gibi, Yunan matematiğinin temelinde Mısır ve Mezopotamya matematiği vardır.

Şimdi Atina ya dönelim. Atina da matematiğin sistematik eğitimi Platonla (M.Ö. 427-347) başlar. Sokratın öğrencisi olan Platon, Sokratın ölüme mahkum edilip, zehir içerek ölmesinden sonra, uzun bir yolculuğa çıkar; 10 yıl kadar Mısır, Sicilya ve Italyada kalır. Orada, Pisagorculardan matematik öğrenir. Matematetiğin doğru düşünme yetisi için ne denli önemli olduğunu anlayan Platon, Atinaya döndüğünde, M.Ö. 387 de, bir okul kurar ve ona Pers-Yunan savaşların kahramanlarından Akademiusun ismini verir. ( Bazı kaynaklara göre de Akademos, Platonun okulunun kurulu olduğu alanın sahibinin ismidir). Bu Platonun “akademi”sidir. Bu akademinin girişinde “her kim ki geometrici değildir, içeriye girmesin yazılıdır”. O tarihlerde, henüz matematik sözcüğü kullanılmamaktadır, “geometri” matematik sözcüğünün yerine kullanılmıştır. Bu okulda felsefe, geometri, müzik ( harmoni teorisi) ve jimnastik ağırlıklı bir eğitim verilmektedir. Geometri doğru düşünmeyi öğrenmenin temel aracı olarak kabul edilmekte ve o tarihlerde felsefe ile geometri içice denecek kadar birbirine yakın konular olarak görülmektedir. Platon bir araştırma yöneticisi gibi görev yapmakta, öğrencilerine çeşitli geometri soruları vererek, onlardan bu soruları halletmelerini istemektedir. Bu okul M.S. 529 a kadar, 900 yıldan fazla faaliyet gösterecektir. Bu okulda çok sayıda matematikçi yetişmiştir. Burada yetişen ilk önemli matematikçi Öklid (Euclid) ( M.Ö.325-265); son önemli matematikçi Proclus (M.S. 411-485) tur. Bu dönemin matematiği hakkında en önemli kaynak Proclusun eserleridir.

M.Ö.400-300 yıllarının en önemli matematikçi-bilim adamı, Platonun akademisinde de hocalık da yapmış olan, Eudoxustur. Pisagorcuların sayı anlayışını değiştirerek, sayıyı iki uzunluğun oranı olarak tanımlayan ve bu tanıma uygun bir sayılar aritmetiği geliştirerek, irrasyonel sayıların keşfi sonucu, matematiği içine düşmüş olduğu krizden kurtaran; entegral kavramının temelinde olan “exhaustion” yöntemini geliştiren ve ilk olarak bir evren modeli tasarlayan Eudoxustur.
“Exhaustion” yöntemi şekli düzgün olmayan, dolaysıyla alanı yada hacmi bilinmeyen bir cismin alan veya hacmini, alanı yada hacmi bilinen şekillerle doldurarak o alanı yada hacmi hesaplama yöntemidir. Bugün, bir fonksiyonun grafiği ile x-aksi arasında kalan alanı bulmak kullandığımız yöntem esasta bu yöntemdir.

M.Ö. 335 den itibaren, Mekodonyalı büyük İskender, 12-13 yıl gibi kısa bir sürede Pers imparatorluğunun tamamını ele geçirir. Hindistan dönüşü, 322 de Babilde ölür. İskenderin ölümünden sonra, İskenderin generalleri kanlı bir iktidar mücadelesine girişirler. Bu mücadele sonucu, İskenderin imparatorluğu üçe bölünür. İmparatorluğun Afrikadaki toprakları ( Mısır , Libya ) general Potelemiye, imparatorluğun Asyadaki toprakları general Seleukosa ve Avrupadaki topraklarda Antigonose düşer. Böylelikle, daha sonra “ Yunan kültür bölgeleri” diye adlandırılacak olan Yunan medeniyetinin gelişeceği üç bölge ortaya çıkar. Bunlar Yunanistan-Mekadonya, Anadolu-Suriye ve Mısır-Libya dır. Makedonya krallığında Platonun akademisi, Aristonun Lisesi gibi okullar eğitimlerini daha uzun yıllar sürdürürler ama daha çok felsefe ağırlıklı olarak. Anadoluda tıp ve astronomide önemli bilginler yetişir, Galen ve Hipparkus gibi. Galennin tıp konusunda 500 civarında kitap (papirüs) yazdığı bilinmektedir. Galen, her ne kadar da Hipokrat ve İbni Sina kadar ismi tıp dünyasının dışında çok bilinen bir kişi değilse de, tarihin en önemli bilim ve tıp adamlarından biridir. Matematik açısından ise en önemli merkez İskenderiyedir.

Potelemi, Zeusun sanat tanrıçaları olarak bilinen kızlarına verilen (Muse) isminden esinlenerek, İskenderiyede tarihin en ünlü Üniversitelerinden birini, Museumu kurar. Burası M.Ö. 312-M.S. 421 tarihler arasında, 700 yıldan fazla bir zaman diliminde bir ileri bilimler merkezi olarak eğitim ve araştırma faaliyetlerini sürdürecektir. Burası, ücretleri devlet hazinesinden ödenen, 100 den fazla bilim adamının çeşitli dallarda eğitim verdiği ve araştırma yaptığı bir kurumdur. Zamanla çok zengin bir kütüphane oluşturacaklar, botanik bahçesi ve bir gözlem evine sahip olacaklardır. Yunan kültür bölgelerine ait önemli bilim adamları burayı ziyaret edip, burada bir süre kalmışlardır.
Museumda ders veren ilk önemli matematikçi Öklid tir. Öklidin yazdığı çok sayıda eser arasında en önemlisi, Öklidin elementleri olarak bilinen 13 kitaplık bir dizi matematik kitaplarıdır. O tarihlerdeki kitap uzunlukları bir papirüslüktür. Bu da bizim ölçülerimizle, 20 ile 50 sayfa arasında bir kitaba karşılık gelmektedir. Bu kitaplarda Öklid o zamanlarda bilinen matematiğinin sistematik bir derlemesini sunar. Bu eserin önemi Öklidin geometriye yaklaşımımda ve konuların takdimindedir. Öklid, geometride, önce, evrensel geçerliği olan, 5 aksiyom verir. Bunlar A=B ve B=C ise A=C gibi her sağduyunun kabul edeceği kurallardır. Sonra nokta, doğru, düzlem gibi kavramların ne olduğunu belirten 31 tanım verir. Sonra da Öklid geometrisinin postulatları olarak bilinen şu beş postulatı verir. 1) iki noktadan bir doğru geçer. 2) bir doğru parçası sınırsız uzatılabilir. 3) bütün dik açılar bir birine eşittir. 4) Bir nokta ve bir uzunluk bir çember belirler. 5) Bir doğruya onun dışındaki bir noktadan sadece bir paralel çizilir. Daha sonra, gökten bir şeyler düşürmeden, mantıki çıkarım yoluyla, bu postulatlardan çıkarabildiği sonuçları teorem, önerme olarak mantıki bir sırada sunar. Aksiyomatiko-dedüktif yaklaşım dediğimiz bu yaklaşım bugünkü matematiğin ve bilimin de temel yaklaşımıdır. Ünlü düşünür Bertrand Russella göre, hiç bir kitap batı düşünce sisteminin oluşmasında bu kitap kadar etkili olmamıştır. Bu kitap tarih boyunca belli-başlı bütün dillere çevrilmiş, 1000 defadan fazla basılmış, bütün medeniyetlerin okullarında okutulmuş, insanlığın en önemli baş yapıtlarından biridir.
Museum da yetişen en önemli matematikçilerden biri de Pergeli Apolloniustur. Antik Çağın, Öklid ve Arşimedle beraber üç büyük matematikçi-bilim adamından biri olarak kabul edilen Apollonius, konik kesitleri üzerine bugün de hayranlık uyandıran 8 kitaplık mükemmel bir eser bırakmıştır insanlığa. (Bu 8 kitaptan 8 cisi bugüne kadar bulunamamıştır).
Bütün zamanların en büyük bilim adamlarından biri olarak kabul edilen Siraküslü Arşimed (M.Ö. 287-212) de bir rivayete göre Museum da yetişmiştir. En azından bir süre burada kaldığı bilinmektedir. Arşimed icat ettiği mekanik aletlerinin yanı sıra, Öklidin geometride yaptığını bir ölçüde mekanikte yapmış, mekaniğin ve hidrostatiğin temel ilkelerini yasalaştırmaya çalışmıştır. Matematiğe katkıları, silindir ve küre hakkında çalışmaları; başlangıcı Eudoxa giden, “exhaustion” yöntemiyle bir çok şeklin alanını hesaplamış olmasını sayabiliriz. Eudoxtan zamanımıza yazılı hiçbir eser kalmamıştır. Bu nedenle, belgeli olarak, bu yöntemin ilk olarak kullanıldığı yer Arşimedin eserleridir. Arşimed bu yöntemle, bir dairenin içine ve dışına düzgün 96 kenarlı çokgenler çizip, onların alanlarını hesaplayarak, pi sayısının 3,10/71 ile 3,10/70 arasında bir değeri olduğunu hesaplamıştır. Bu da pi nin virgülden sonra ilk üç rakamını doğru olarak vermektedir. O zamana kadar pi sayısının bilinen değerleri deneysel, ölçme yoluyla elde edilen değerler idi.
Museum da yetişen ve tarihin en önemli astronomlarından biri olarak kabul edilen bir bilim adamı da, batılıların Potolemy, doğuluların Batlamyüs olarak bildiği Claudius Potolemydir (M.S. 85-165). Batlamyüs, uzun yıllar süren gözlemlerden sonra, Hipparkus gibi daha önce yaşamış olan başka astronomların da gözlemlerini de kullanarak, tutarlı bir evren sistemi oluşturmuş; geniş astronomik ölçüm cetvelleri ve bir yıdız kataloğu hazırlamıştır. Batlamyüsün sisteminde, dünya sistemin merkezindedir; güneş, ay ve diğer gezegenler dünya etrafında çembersel bir yörüngede dönmektedirler. Arapların, en büyük manasına “almagest” dedikleri ve Yunanca ismi “matematica” olan ünlü astronomi kitabı 15 asır boyunca astronomi ile ilgilenen bütün bilim adamlarının başucu kitabı olarak kalmıştır.

Yunanlılar alfabelerinin harflerini rakam olarak kullanmışlardır. Bu sistemde sayıların yazılımı Romen rakamlarının yazılımına benzer ama daha gelişmiş bir sistemdir. Yunun matematiği büyük ölçüde geometri olarak geliştiği için çok yetkin bir rakam sistemine ihtiyaç duymamışlardır.

Bu kısımda anlatmaya çalıştığımız dönemde yaşamış 100 den fazla matematikçinin ismi ve bazı çalışmaları zamanımıza gelmiştir. Bu da o dönemdeki bilimsel faaliyetlerin yoğunluğu, devlet ve toplum nezdindeki önemini göstermektedir.

Yunan matematiğini değerlendirecek olursak, temel özellikleri şunlardır: a) Yunanlılarla, matematik zanaat düzeyinden sanat düzeyine geçmiştir. Bu matematikte, günlük hayatta işe yararlılık değil, derinlik, estetik ön plandadır. b) Yunan matematiği bugünkü manada moderindir; bugün biz nasıl matematik yapıyorsak, o zaman onlar da böyle yapıyorlardı. Zaman içinde ispat anlayış ve standartları değişmektedir; ama Öklidin verdiği ispatlar, bugün de büyük ölçüde geçerlidir.

Şimdi bu dönem nasıl bitti, bir sonraki dönem nasıl başladı; kısaca bunu anlatmaya çalışacağım. Bu dönemi sona erdiren iki önemli etmen Romanın yükselişi ve Hıristiyanlığın Roma imparatorluğunun resmi dini oluşudur.
M.Ö. 150 yıllardan itibaren Roma imparatorluğu genişlemeye başlamıştır. M. Ö. 30 lu yıllara gelindiğinde her üç Yunan kültür bölgesi de artık Romalıların hükmü altındadır. Her ne kadar da idari ve askeri olarak Romalılar Yunan kültür bölgelerine hakim iseler de, kültürel olarak Roma imparatorluğu bir Yunan kolonisidir; az-çok, Yavuz Sultan Selimden sonra, Osmanlıların Arap dünyasına hükmetmelerine karşın, kültürel açıdan bir Arap kolonisi durumunda oldukları gibi. Bu nedenle, Romalılar Yunan kültür kurumlarının (Platonnun akademisi, Bergama Okulu, Museum gibi) faaliyetlerine devam etmelerine müsaade etmişlerdir. İskenderiyenin alınışı sırasında İskenderiye kütüphanesi yanmıştır ama Bergama kütüphanesinden gönderilen 200.000 kitapla İskenderiye kütüphanesi tekrar oluşturulmuştur. Romalılar Museum daki bilim adamların maaşlarını devlet hazinesinden karşılamayı sürdürmüşlerdir. Ne var ki, zamanla ekonomik durumun kötüleşmesi eğitim kurumlarında etkileyecektir.
Bu kurumlara en büyük darbeyi vuran ise Hrıstiyanlık olmuştur. Hrıstiyanlık ilk 300 yıl yasaklı olduğu için yer altında gelişmiştir. Bu dönemde Hrıstiyanlık çok hoş görülü ve bir eşitlik dinidir. Bu nedenlerle, geniş bir taraftar kitlesi bulabilmiştir. M.S. 300 gelindiğinde, Hristıyanlığın gelişmesinin önlenemeyeceğini anlayan Roma imparatoru I. Constantin 313 de Hristıyanlığın üzerindeki yasağı kaldırmış, Romadan ayrılarak, Roma imparatorluğunun başkentini İstanbula (Constantinople) taşımıştır. 380 lerde, Hristıyanlık Roma imparatorluğunun resmi dini olmuştur. Bu tarihten itibaren, Kilise yavaş-yavaş sosyal ve eğitim hayatına hakim olmaya, Hristıyan öğretisinin dışında hiç bir öğretiye hoş bakmamaya başlamıştır. 390 de Kril (Cril) isimli bir papazın İskenderiye kütüphanesini ateşe vermesiyle başlayan girişim, Museumda çalışan bilim insanlarına saldırılara dönüşmüş; 421 de Museumda ders veren ve tarihin ilk kadın matematikçisi olarak bilinen Hypatia [Hypatia, tanınmış bir matematikçi olan İskenderiyeli Heronun kızıdır] yobaz Hrıstiyanlar tarafından linç edilerek öldürülmüştür. Bu olaydan sonra Museum kapanmış ve 641 de Müslümanların Mısırı fethi sırasında da tamamen yanmıştır. Bu okulun kapanmasından sonra, Museum da çalışan bilim adamları kitaplarını alarak, Sasanilerin hakim oldukları bölgelere, Mezopotamya içlerine, özellikle Cundişapura (şimdiki İraktaki Beth-Lapat), sonraları da güneydoğu Anadoluya (Harran, Urfa) göçmüşlerdir. 529 yılında da Bizans imparatoru Jüstinyen, Atina da bulunan Platonun akademisini kapatmıştır. Bu tarih Yunan kültürünün hakim olduğu bir dönemin bitişi, karanlık çağın başlangıcıdır. Akademinin kapanmasından sonra orada çalışan bilim insanlarının bir kısmı da doğuya göçmüşlerdir. Bu göçler kitlesel göçler değildi; bugün olduğu gibi o gün de bilim insanları kitle oluşturacak kadar çok olmamışlardır. Bu göçlerin Haçlı seferlerine kadar zaman -zaman devam ettiği anlaşılmaktadır. Doğuya göçen bu bilim adamları, Yunan kültürüne aşina olan ortamlarda, özellikle Nestorien- Süryani toplumlarda daha uzun yıllar öğretilerini sürdürmeye, bilim meşalesini söndürmemeye çalışacaklardır. İslam biliminin temelinde bu insanların emeği, onların yaptıkları çeviriler vardır. Böylelikle bundan sonraki döneme, Müslümanların hakim olduğu döneme gelmiş bulunuyoruz.

3- Islam Dünyasında ve Orta Çağda Matematik. 611 den, Hz. Muhammetin peygamberliğini açıklamasından yüz yıl sonra, 711 re gelindiğinde, İslam imparatorluğu, doğuda Çin sınırına ve Hindistan içlerine, batıda, kuzey Afrikadan ve Cebel-Tarıktan geçerek, Pirene dağlarına dayanıyordu. Bu arada, İstanbul kuşatılmış (675-677), doğu ve güneydoğu Anadolunun bir kısmı fethedilmiş, Kıbrıs ve Sicilya alınmış, devasa bir imparatorluk oluşturulmuştu. Bu imparatorluk Şamdan, Emevi hanedanlığı tarafından yönetilmekteydi.
Emevilerin Arap olanla olmayanlara farklı muameleleri orta Asyada, Ebu Müslim Horasaninin yönettiği büyük bir isyan çıkmasına neden oldu. Bu isyan Basra civarında başlayan Abbas oğullarının isyanıyla birleşerek Emevi hanedanlığına son verdi. Kıyımdan kurtulan Emevilerden Abdurahman Endülüste Emevi hanedanlığını daha bir süre devam ettirecektir.
İslam dünyasına bilim, 750 den sonra, Abbasiler zamanında girmeye başladı. O tarihlerde, Basra bölgesinden yayılmaya başlayan ve İslam rasyonelizimi olarak ta bilinen Mutezile (=ayrılanlar) tarikatı, bu tarikatın Vasıl bin Ata gibi o zamanki önderlerinin halife Mansura ve Şia imamlarına yakın olmaları, bu tarikatın devlet ve halk tarafından benimsenmesine neden oldu. Doğruların akıl ve rasyonel düşünceyle bulunacağını savunan bu akım, İslam dünyasına bilimin girmesinin düşünsel zeminini oluşturmuştur. Abbasiler Şamı başkent yapmayarak, Bağdatı kurup orasını kendilerine başkent yapmışlardır. Abbasi halifeleri Mansur, Harun Reşit ve El-Mamun, Bağdatta “Darül Hikmet “ ( Aklın Evi) diye bilinen, İskenderiyedeki Museum benzeri bir medrese kurmuşlar, büyük bir çeviri faaliyetine girişmişlerdir. Yukarıda da belirtildiği gibi, ilk çeviriler, Yunan dil ve kültürüne vakıf bölgelerdeki, özellikle Cundişapur ve güneydoğu Anadoludaki Süryani ve Sabiiler ( Harranlı Tabit ibni Kurra ve çocukları gibi) tarafından yapılmıştır. Çeviriler sadece Yunancadan değil, Hindçeden, Pehleviceden, İbraniceden... de yapılmıştır. Böylelikle geniş bir kütüphane oluşturulacaktır. Bu çevirilerin çeşitli kaynaktan yapılmış olmasından da anlaşılacağı gibi, İslam matematiği Yunan geleneğinin bir devamı olmaktan çok, Yunan, Mezopotamya ve Hind matematiklerinin bir sentezidir. Sayı sistemleri, aritmetik, trigonometri ve cebir, daha çok Mezopotamya ve Hind geleneklerine; geometri ise Yunan geleneğine dayanır. Zamanımıza, 750-1450 yılları arasında yaşamış 50 kadar matematikçi-bilim adamının ismi ve çalışmaları gelmiştir. Unutmamak gerekir ki, o tarihlerde yaşamış olan bilim insanlarının çoğu, zamanın bütün bilimleriyle uğraşmış, ya da en azından 3-4 bilim dalında eser vermiş insanlardır. Bu 50 kadar matematikçiden sadece 4-5 tanesinin çalışmaları hakkında bilgi vereceğim. Bunun bize o dönem matematiği hakkında yeterli bir fikir verecektir sanırım.

İlk ele alacağımız matematikçi Muhammet ibni Musa al-Harazmidir (780-850). İsminden güney Özbekistanda doğduğu anlaşılıyor. Hayatı ve nerelerde okuduğu hakkında güvenilir bir bilgi yoktur. 810 dan sonra Bağdatta Darül Hikmetin kütüphanecisi olarak çalışmaya başlamış ve 4 kitap yazmıştır. Bunlardan biri coğrafya, biri astronomi, biri aritmetik diğeri de bir cebir kitabıdır. Biz bu son ikisi hakkında biraz bilgi vereceğiz. Al-Harazminin en ünlü kitabı “ Al-Cebir ve Al-Mukabele” dır. Bu “indirgeme ve denkleme” manasına gelen başlık, daha sonraları “Cebir” (veya Algebra) olarak kısaltılacaktır. Bu kitapta Al-Harazmi ikinci dereceden bir polinomu katsayılarının işaretine göre 6 sınıfa ayırarak, sistematik olarak, her sınıf için, köklerin nasıl bulunacağını “algoritmik” bir yaklaşımla göstermektedir. Örnek olarak, bizim bu gün x^2-10x-4=0 olarak yazacağız bir polinomu x^2=10x+4 şeklinde yazmaktadır ve bu polinomun köklerini bulmak için adım -adım ne yapılması gerektiğini söylemektedir. Unutmamak gerekir ki o tarihlerde henüz negatif sayılar kullanılmıyor ve sayı uzunluk olarak düşünülmektedir. Müslümanlar, burada söz konusu olan dönemde (750-1450), bir istisna (Abu Waffa (940-998)) dışında, negatif sayıları hiç kullanmamışlardır. Al-Harazminin, verilen bir polinomun kökünü bulmak için, izlemiş olduğu adım-adım yaklaşıma günümüzde “algoritmik” yaklaşım denmektedir; bu sözcük Al-Harazminin ismi bozularak türetilmiştir. Al Harazmi, daha sonra, algoritmik olarak bulduğu kökü geometrik olarak da bularak yaptıklarını doğrulamaktadır. Son olarakta Al-Harazmi kitabında, bu yöntemin miras hesaplarına pratik uygulamalarını vermektedir. Bu kitap 1140 larda Latinciye çevrilmiş ve 1600 lere kadar batı okullarında kullanılmıştır. Bu eser, hakkında çok tartışma olan bir eserdir. Kimilerine göre, cebirin esas babası Diofanddır; Al-Harazminin cebiri Mezopotamya matematiğinden daha ileri düzeyde değildir. Bu da büyük ölçüde doğrudur. Kimileri ise, bu eserin her şey ile orijinal olduğunu savunmakta. Açık olan bir şey varsa, o da bu eserden sonra, matematikte “cebir” diye bir ana bilim dalının ortaya çıkmasıdır. Önemli olan diğer bir husus da, algoritmik yaklaşım dediğimiz, bu kitabın yöntemidir. Al-Harazminin diğer kitabı bir “Hesap” kitabıdır. Bu kitabın Arapçası günümüze ulaşmamıştır; var olan bir Latince çevirisidir. Bu kitapta, Al- Harazmi bugün kullandığımız Hind-Arap rakamları olarak bilinen ( 1,2,...,9, 0) rakamları tanıtmakta; onlarla sayıların nasıl yazıldığını, toplama, çarpma gibi işlemlerin nasıl yapıldığını anlatmaktadır. Burada sıfır bir “ boşluk dolduran sembol” olarak kullanılmıştır, sayı olarak değil. Sayı olarak, sıfır ilk kez, 876 de Hindistanda kullanılmıştır. Daha önce de kullanıldığı hakkında bilgiler vardır ama herkesin hem fikir olduğu tarih bu tarihtir. Negatif sayıların da Hindistanda 620 lerde kullanıldığı bilinmektedir ama az-çok yaygın olarak kullanılmaya başlanmaları 1600 ler den sonradır.
Çalışmalarına deyineceğimiz ikinci matematikçi Ömer Hayyamdır (1048-1131). Nişabur da doğan Ömer Hayyam, 1073 den sonra, İsfahanda kurulan rasathanede, Selçuk hükümdarı Melik Şahın “müneccim başı” olarak çalışmaya başlamış. Zamanımıza Rubailerinden başka bir cebir kitabı ve astronomiyle ilgili çalışmalarından da bazı kısımlar kalmıştır. Cebir kitabında, üçüncü dereceden polinomların bir sınıflandırmasını yaparak, konik kesitlerini kesiştirerek, bu polinomların köklerini geometrik olarak bulmaya çalışmıştır. Örnek olarak, x^3+ax^2+bx+c=0 polinomunun kökünü bulmak için x^2=2dy alarak 2dxy+2ady+bx+c=0 hiperbolünü elde eder. Bu hiperbol ile y=x^2/2d parabolünun kesişme noktaları baştaki polinomun köklerini verecektir. Bu çalışmada önemli iki nokta, üçüncü dereceden bir polinomun birden çok kökünün olabileceğini anlamış olması ve kökleri bulmak için konik kesitlerini kullanması gerektiğini görmüş olmasıdır. Bu da Ömer Hayyamın Apolyonusun konik kesitleri gibi zor bir konuya derinlemesine vakfı olduğunu göstermektedir. Ömer Hayyam astronom olarak, gözlem ve ölçümlere dayalı, bir takvim reformu yaparak, yeni bir takvim (Celali takvimi) hazırlamıştır. Bu gayeyle, Ömer Hayyam bir güneş yılının uzunluğunu 365.24219858156 gün olarak hesaplamıştır. Şimdi bilinen, bir yılın 365.242190 gün olduğunu ve her 70-80 senede virgülden sonraki 6. rakamın değiştiğini burada belirtelim.
Çalışmaları hakkında bilgi vereceğimiz üçüncü matematikçi Şarafeddin al-Tusi (1135-1213) dır. İsminden, İranın Tus şehrinde doğduğu anlaşılmaktadır. Muhtemelen Meşed yada Nişaburda yetişmiştir. Şam, Halep, Musul ve Bağdat da matematik okutmuştur. Önemli bir cebir kitabının yazarıdır. Ş. Al-Tusi de, Ömer Hayyam gibi üçüncü dereceden polinomların köklerini bulmak için uğraşmıştır. Harazminin izinden giden Ş. Al-Tusi, üçüncü dereceden denklemleri 25 sınıfa ayırarak, cebirsel yaklaşımla, onların köklerini bulmaya çalışmıştır. Bugünkü notasyonla, x^3-ax=b gibi bir denklemin belli bir aralıkta çözümünün olabilmesi için, b nin x^3-ax in maksimumu ile minimumu arasında olması gerektiği anlayan Ş. Al-Tusi, bu ifadenin maksimumun bu ifadenin “türev” inin sıfır olduğu yerde araması gerektiğini anlamıştır. Kimi yazarlara göre bu türevin keşfidir. Ne yazık ki o zaman bu keşfin değeri anlaşılmamış, türevin farkına varılmamıştır. Matematiğin en önemli keşiflerinden olan türev, 1636 de Fermat tarafından tekrar keşfedilecek ve bu da, analitik geometri ile beraber, kalkülüsün doğumuna neden olacak ve matematikte bir devrim yaratacaktır.
Ele alacağımız 4. matematikçi, büyük Tusi, Nasireddin Al-Tusidir (1201-1274). O devir İslam dünyasının en büyük bilim adamlarından olan N. Al-Tusi, Tus ve Nişapurda okumuştur. Mantık, Ahlak, Felsefe, Astronomi ve Matematik kitapları yazmıştır. Hayatının önemli bir kısmını, Hasan El-Sabahın örgütünün merkezlerinden biri olan, ve çok iyi bir kütüphanesi olduğu bilinen, Alamud kalesinde araştırma yaparak geçirmiştir. Bu kale 1256 da Hülagü han tarafından alındıktan sonra, Hülagü hanın müneccim başı olmuş, 1262 den sonrada Maragehde ( Güney Azerbaycanda, Tebriz civarında ) Hülagü hanın emriyle kurulan rasathanede araştırmalarını sürdürmüş ve bir ziç, Ziç-i-İlhani yi hazırlamıştır. Ziçler, astronomik hesaplar için gerekli olan, sinüs cetvelleridir. N. Al-Tusinin astronomi ile ilgili çalışmaları, Batlamyüsden sonra Copernicusun çalışmalarına kadar, astronomi hakkında en önemli çalışmalardan biri olarak kabul edilir. Matematikle ilgili en önemli çalışması, düzlem ve küresel trigonometri ile ilgili çalışmalarıdır. Bu eserden sonra trigonometri, astronomi için bir araç olmaktan çıkıp, matematiğin bir ana dalı olmuştur. Bunun dışında, Yunancadan çeviri çok sayıda matematik kitaplarına izah ve yorumlar yazmış; bir sayının n inci kökünü bulmak için çalışmalar yapmıştır. Batılı matematikçi ve astronomiçilerin, eserlerinden en çok yararlandıkları islam dünyası bilim adamlarının başında N. Al-Tusi gelir.
Çalışmalarından bahsedeceğimiz bu dönemin son matematikçisi Cemşit Al-Kaşi dır (1380-1429). Kaşan (Iran) da doğmuştur. Kaşanda yetiştiği anlaşılan Al-Kaşi, 1420 den itibaren ölene kadar, Uluğ Bey ve Kadızade ile Semarkand ta Uluğ Bey medresesinde ve rasathanesinde çalışmıştır. Timurlengin torunu olan Uluğ Bey (1393-1449) iyi bir matematikçi, bilim aşığı bir hükümdardı. O tarihlerde Uluğ Bey in medresesinde 60 civarında zamanın en iyi bilim adamları ders vermekte ve araştırma yapmaktadır; bu metrese, pozitif bilimlerin okutulduğu ve bilimsel bir saygınlığı olan İslam ülkelerindeki son metresedir. Al-Kaşi, Uluğ Beyle beraber, N. Al-Tusinin ziçlerinden de yararlanarak, Ziç-i-Hakani olarak bilinen Uluğ Beyin ziçlerini hazırlamıştır. Bu ziçte 1 den 90 dereceye kadar olan açıların, birer dakika arayla, sinüsleri verilmiştir. Bu da 60x90=5400 giriş demektir. Her açının sinüsü, virgülden sonra 8. haneye kadar verilmiştir. Bu iş bugünün imkanlarıyla bile, kolayca yapılacak bir iş değildir. Ayrıca bu ziç, güneş, ay ve gezegenlerin konumu ve hareketleri hakkında detaylı bilgi ve gözlem tabloları içermektedir. Al-Kaşi muhteşem bir hesap yeteneği olan matematikçidir. Yarı çapı 1 olan bir daireyi 3x2^28=805. 306. 368 kenarlı bir poligonun içine oturtarak, pi sayısının virgülden sonra 16 hanesini ( 10 ve 60 tabanlı sayı sistemlerinde) doğru olarak vermiştir. Bu rekor ancak 200 yıl sonra kırılabilecektir. Al-Kaşi, içeriğinin zenginli, ispatlarının açıklığı ile orta çağın en iyi kitaplarından biri olarak kabul edilen “Aritmetiğin Anahtarı” başlıklı bir kitabın da yazarıdır. Ondalık kesirlerle 4 işlemin nasıl yapılacağını açıklayan da Al-Kaşidir.
Al-Kaşinin ölümünden sonra Uluğ Beye ziçlerini tamamlamasına ve gerekli izahların yazılmasına, Al-Kaşi ve Kadızade nin öğrencisi olan, Ali Kuşçu yardım etmiştir. 1449 da Uluğ Beyin, devlet işleriyle uğraşmıyor, hayırsız bilimle uğraşıyor diye öz oğlu ve akrabaları tarafından öldürülmesinden sonra, Uluğ Beyin medrese ve rasathanesi de çökmüştür. Bu İslam dünyasındaki son önemli positif bilim merkezinin sönmesidir. Bu son ismi geçen kişiler İslam dünyasının matematikçi diyebileceğimiz son bilim adamlarıdır. 1450 den 1930-40 lara kadar İslam dünyasında orijinal bir çalışma yapmış ve matematikçi diye nitelendirebileceğimiz bir kişinin ismi bilim tarihinde geçmemektedir.
Bu bölümü Müslümanların matematiğe katkılarının bir değerlendirmesiyle bitireceğim. Müslümanların matematiğe katkılarını, bu konuda çok çelişkili yargıların olması nedeniyle, değerlendirmek çok zordur. Müslümanların matematiğe katkıları kimi yazarlar tarafından sıfırlanırken, kimi yazarlar tarafından da göklere çıkartılmaktadır. Kimi yazarlara göre Müslümanların matematiğe hiç bir katkısı olmamıştır; bütün yaptıkları bir buzdolabı görevi görmekten ibarettir. Yunanlıların pişirdiklerini, Avrupalılar onu yiyecek düzeye gelene kadar saklamışlar, günü geldiğinde de Avrupalılar onu alıp yemişlerdir. Kimilerine göre ise, Müslümanların matematiğe ve astronominin gelişmesine kapsamlı özgün katkıları olmuştur; bu gün batılı bilim adamlarının adını taşıyan bir çok teorem veya sonuç daha önce Müslümanlar tarafından bulunmuştur. Görülen o ki a) Müslümanlar sulayıp büyüttükleri ağaçların meyvelerini toplayamamışlar; ve b) Müslümanların bilime katkıları yeteri kadar araştırılıp değerlendirilmemiştir. Bu işi yapanların çoğunlukla yine batılı bilim tarihçilerin olduklarını unutmamak gerek. Kendi bildiğim kadarıyla, Müslüman matematikçilerin Küresel geometriye, cebire, sayılar teorisine, trigonometri ve astronomiye özgün katkıları olmuştur ve bu katkılar hiçte küçümsenecek ölçülerde değildir. Ayrıca, insanlığın ortak ürünü olan bilimin önemli bir halkası, eskiyle yeniyi bağlayan halkası, İslam bilimidir. Bu halka olmadan, bilimin bugünkü düzeye gelmesi herhalde mümkün olmayacaktı.
Bir sonraki bölüme geçmeden “İslam ülkelerinde bilim niye çöktü; batıya bilim nasıl girdi “ soruları hakkında bir kaç şey söylemem gerekir. Bu sorular, tek bir kişinin yanıtlayabileceği sorular değildir; ancak geniş ve çok yönlü bir ekip bu sorulara tatmin edecek cevap verebilir. Şimdi söyleyeceklerim, başka biri için, İslam ülkelerinde bilimin çöküşünün en derin nedenleri olmayabilir. Bu konu çok tartışılan bir konudur, bildiginiz gibi. Şimdi söyleyeceklerim sadece kendi görüşlerimi yansıtmaktadır.
a) Haçlı seferleri İslam dünyasında, bugün de kanayan, derin yaralar açmıştır. İlk haçlı seferleri sırasında yapılan büyük katliamlar ve yamyamlık olayları, bölge insanlarını derin bir ümitsizlik, çaresizliğe ve bunalıma sokmuştur. Niçin bu duruma düştüklerini sorgulayan insanlar, İslamın başında olduğu gibi din duygularının güçlendirilmesi, dini ve imanı için ölecek insanların yetiştirilmesi gerektiği kararına varmışlar. İmam Gazalinin görüşlerinin de etkisiyle, bu tarihlerde, 1100-1150 arası, İslam dünyasında akli bilimlerden nakli bilimlere bir dönüş olmuştur. Bu olayın üzerine, 1250 lerden itibaren başlayan Moğol istilası sonucu, eğitim kurumları ve kütüphanelerin en önemlilerinin yok oluşunun eklenmesi; benzeri durumun Endülüsün kademeli olarak Hrıstiyanların eline düşmesi sonucunda da olması, bu geçişi kolaylaştırmış, derinleştirmiştir ve geri dönülmesi neredeyse olanaksız bir noktaya getirmiştir. Ancak haçlı seferleri ve Moğol istilası gibi derin izler bırakan bir olay bu gidişi tersine çevirebilirdi; bu da 1918 de yaşanan son “haçlı” seferiyle yaşanmıştır. Atatürkün “Hayatta en hakiki mürşit ilimdir, fendir; bunun dışında mürşit aramak, gaflettedir, delalettir “ sözü, nakli bilimlerden akli bilimlere dönüşü simgeler.
b) Medreseler İslam dünyasında daha çok 1150 den sonra çoğalmaya başlamışlar ve “nakli bilim” ( ya da “hayırlı bilim” eğitimi veren okullar olarak çoğalmışlardır. Osmanlı İmparatorluğuna Araplardan geçen bilim geleneği akli ilim değil, nakli bilim geleneğidir.
c) Medreseler, vakıflara bağlı olmalarına rağmen, kurumsallaşıp, gelişmemiş; aksine her türlü yeniliğe karşı çıkan, yobaz üretim merkezi olmuşlardır.
d) Dini ve dini ulemayı kendine ideolojik dayanak yapan yönetici sınıf, ulemayı imtiyazlı bir sınıf konumuna getirirken, pozitif bilimlerle uğraşanları ezmişlerdir.
e) İmtiyazlı bir sınıf konumuna gelen, devlet ve halk nezdinde büyük bir saygınlığa erişen ulema sınıfı, pozitif bilimlerin yeşermesine, bu bilimlerle uğraşan insanların toplum içinde saygın bir konuma gelmelerine mani olmak için açık-gizle her türlü çabayı göstermişlerdir ve bunda da başarılı olmuşlardır.
f) Dar bir ortamda yetişen, dünya görüşünden yoksun, ülke ekonomisiyle kendi ekonomisini karıştıran idareci sınıfları bilimle teknoloji arasındaki ilişkiyi hiç bir zaman anlamamış; ülkelerinin geri kaldığını ancak askeri yenilgilerden sonra anlayabilmişlerdir. Bu durumda, köklü reform yapmaları gerekirken, düzen bozulur korkusuyla, koyma suyla değirmen döndürmeye çalışmışlar, orduyu düzeltmek için bir-kaç yabancı uzman çağırmakla yetinmişlerdir.
İslam ülkelerinde, özellikle Türkiyede, nakli bilimlerden akli bilime dönüş, yukarıda 9. haçlı seferi olarak nitelediğim, bütün İslam ülkelerinin batının işgaline uğradığı, 1.ci dünya savaşından, özellikle1930 lardan sonradır. Bu ülkelerde, bilimsel gelişmeler ancak bu tarihten sonra, emekleye-emekleye de olsa, gelişmeye başlamıştır.
Batıya matematik nasıl girdi sorusuna gelince, bu üç yoldan olmuştur. a) Ortadoğuda 4 krallık kurup, 200 yıla yakın bir süre Ortadoğuda kalan haçlılar vasıtasıyla, b) Arap medreselerinde okuyan batılı öğrenciler vasıtasıyla; ve c) Endülüsten. Büyük kapının Endülüs olduğu gözükmektedir. Her ne kadar da Endülüste önemli matematikçiler yetişmemiş olsa da, Endülüste eğitimin yaygın; ortamın bilim için uygun olduğu, felsefe, kimya tıp, gibi bilim dallarda oldukça ileri olduğu bilinmektedir. Örneğin, 11. asırda Kordobada 400 bin kitablık merkez kütüphanesi, 17 medrese ve bir çok halk kütüphanesi bulunuyordu. Buralarda Hristıyan ve Musevi öğrenciler okuyabiliyordu. Toleodo İspanyolların eline geçtiğinde (1100), Toleodo piskoposu, büyük bir çeviri bürosu kurarak, çok sayıda bilimsel eseri, Arap metreselerinde yetişmiş olan Musevi çevirmenler vasıtasıyla, Arapçadan Latinceye çevirtmiştir. 12. asra kadar Avrupadaki okullar, din ağırlıklı skolastik eğitim verilen manastır veya katedral okullarıydı. 12. asrın ortalarından itibaren İtalyada (Bolonya, Padova), öğrencilerin “universita” dedikleri dernek türü kurumlarda bir araya gelerek, eğitim için birleşmiş, böylelikle daha sonra üniversite olacak kurumların çekirdeklerini dikmişlerdir. Bu kurumlarda ders veren hocalar Arap metreslerinde okumuş batılı (İtalyan) gençlerdi. Daha sonra bu kurumlarda okuyan Avrupalı öğrenciler Almanyada (Köln), Fransada (Sorbone) ve İngilterede ( Oxford, Cambrigde) üniversitesi olacak olan eğitim kurumlarını kuracaklardır. Bu dönemde Kutsal Roma-Germen imparatoru olan 2. Frederikin açık görüşlü, bilime değer veren bir insan oluşunun ve, 1200 lerin başında kurulmuş olan, Fransican tarikatının katkılarının da pozitif bilimlerin Avrupayaya girmesinde ve gelişmesinde etkili olmuş olduğunu belirtmek gerekir.
1200 ile 1500 ler arası Avrupalıların bilimsel kaynakları Arapça eserlerdi. Uğraştıkları sorular da bu kitaplarda Müslüman matematikçilerin uğraştığı sorulardı. Bunlar da, bazı geometri soruları, 3. dereceden polinomun köklerini bulma sorunu, sayılar teorisiyle ilgili sorulardır. 1450 lerden sonra, İstanbul dan İtalyaya giden kitaplardan, matematiğin Yunanca kaynaklarına inmeye, Yunanca kaynaklardan çeviri yapmaya başlıyacaklardır; 1600 lerden sonra Arapça kaynaklar büyük ölçüde terk edilecektir. Avrupada matematikte özgün gelişmeler 1500 lerden sonradır. Şimdi biraz bunlardan bahsetmemiz gerekiyor.
Batıya bugünkü kullandığımız Hind-Arap rakamları (1,2,...,9, 0) 1200 lerin başında Fibonaccinin ( Leonordo de Pisa, 1175-1250) yazdığı “ Liber Abacci” isimli kitabıyla girmiştir. Bu kitapta Fibonacci, kendinden 400 yıl önce Harazminin yaptığı gibi, bu rakamlarla sayıların nasıl yazılacağını, dört işlemin nasıl yapılacağını izah etmektedir. Bu rakamlar batıda günlük hayatta 16. asra kadar çok yaygın olarak kullanılmamış, zaman –zaman da yasaklanmıştır. Bu rakamların halk arsında yaygın olarak kullanılması Fransız devriminden sonra olmuştur.
Avrupada, matematikte, 1200 lerden 1500 lere kadar kayda değer özgün bir çalışma yoktur. 1500-1600 arası iki önemli çalışma a) Tartaglianın (1499-1557) bulduğu ama Cardanonun (1501-1576) aşırarak yayımladığı üçüncü dereceden polinomların cebirsel olarak köklerinin bulunmasıdır. Kompleks sayılar ilk olarak 3. derecede polinomların kökünü veren formülde, o tarihlerde anlaşılmamış olsa da, ortaya çıkmıştır. Daha sonra Bombelli (1526-1572) cebir kitabında bazı tip kompleks sayılara yer verecek, onlarla nasıl işlem yapılacağını anlatacaktır. b) Diğer önemli çalışma ise, F. De Viete (1540-1603) in cebir kitabıdır. İlk olarak bu kitapta, cebir, sözel olmaktan çıkıp, sembolleşmeye başlamıştır. Vietein kitabında sessiz harfler bilinen kantiteler, sesliler de bilinmeyenler için kullanılmıştır. Sabitler için a,b gibi alfabenin ilk harflerinin; bilinmeyenler için de x,y gibi alfabenin son harflerinin kullanılması Descartesle başlayacaktır.
1600-1700 arası matematikte önemli gelişmelerin olduğu yıllardır. Bu asrın üç önemli gelişmesi şunlardır:
a) Türevin bulunması. P. Fermatnın (1601-1665), 1636 da, bir eğrinin maksimum, minimum ve tanjantını bulmak için verdiği çabalar, Ş. Al-Tusiden 5 asır sonra, onu da türevin keşfine götürmüştür. Artık matematik dünyası, yavaş da olsa, bunu anlayacak kadar olgundur.
b) Analitik geometrinin ve kartezyen koordinat sistemini ortaya çıkması. R. Descartesın (1596-1650) geometriyi cebirleştirme çabaları ve bir eğriyi bir reper sisteminde çizme isteği analitik geometrinin doğmasına ve, bugün Descartes a ithafen adlandırılan, “cartesien” koordinat sisteminin ortaya çıkmasına yol açacaktır. Ve,
c) türev ile entegral arasındaki, bugün “Kalkülüsün Temel Teoremi” dediğimiz, ilişkinin Newton (1643-1727) ve Leibniz (1646-1716) tarafından, birbirinden bağımsız olarak, bulunmasıdır.
Böylelikle, bu üç gelşmenin sonucu olarak, “ Integral Calculus” doğacaktır. Bu da, o güne kadar kullanım alanı oldukça sınırlı olan matematiğin önünü açacak ve matematiği evrensel bir bilim konumuna getirecektir. Ayrıca, kalkülüsle beraber bilimsel fizik ve mühendislik bilimleri de doğacaktır. Türevden önce, differensiel denklem, dolaysıyla bilimsel fizik yoktu. Bir differensiyel denklem, fiziki bir olayın metematiki ifadesindir. Bu çalışmalar ve astronomideki gelişmeler matematiği başka bir düzeye, yeni bir döneme taşıyacaktır.
4- Klasik Matematik Dönemi. 1700- 1900 yılları arasını kapsayan ve matematiğin altın çağı olarak bilinen, bu dördüncü dönem, klasik matematik dönemidir. 18. asırda matematiğe en önemli katkıları yapan bilim adamlarının başında Euler, Laplace, Lagrange ve DAlemberti sayabiliriz.
Leonhard Euler (1707-1783) İsviçrede, Basel de doğmuş, meslek hayatının tamamı Petersbourg ve Berlinde geçmiştir. Tarihin en üretken bilim adamıdır. Kalkülüsün ortaya çıkardığı olanakları sayılar teorisinden, differensiyel denklemlere; differensiyel denklemlerden, mühendislik problemlerine... uygulayan Euler, 30.000 sayfadan fazla bilimsel eser üretmiştir. Öldükten 50 sene sonra dahi, birikmiş makalelerinin yayını sürmüştür. Eulerle matematik evrensel boyutlara erişmiştir. Bugün bile matematikçilerin yaptığı işlerin bir çoğunun temel fikri veya başlangıcı Eulerin çalışmalarıdır. Eulerle Analiz yeni bir bilim dalı olarak temeyyüz etmiştir; bu dalın büyük babaları Eudoxus ve Arşimed ise, babası Eulerdir.
Laplace (1749-1827) Fransada, Normandia da doğmuştur. Gök ve yer mekaniği hakkında yazdığı 11 ciltlik eseri, bütün zamanlarda mekanik hakkında yazılmış en kapsamlı eserlerinden biridir. “Theorie Analytique des Probabilites” başlıklı kitabı olasılık teorisinin ilk önemli eseridir.
Joseph-Louis Lagrange (1736-1813) İtalyada Turinda doğmuş, meslek hayatının büyük bölümünü Berlin ve Pariste geçirmiştir. İtalyada doğmasına rağmen Fransız matematikçisi olarak bilinir. Lagrange cebirsel denklemlerin çözülebilirliği, mekanik, differensiyel denklemler ve varyasyon hesabına önemli katkılar yapmış, fikirleri ve yöntemleri bugün de kullanılan bir bilim adamıdır.
Jean Le Rond DAlembert (1717-1783) Pariste doğmuş, Fransada yaşamıştır. DAlembert kısmi differensiyel denklemleri ilk inceleyen bilim adamlarından biridir. Kısmi differensiyel denklemler ve akışkanlar mekaniği ilgili çalışmaları ve felsefi yazıları dışında, Diderot ile beraber editörlüğünü yaptığı ünlü 28 ciltlik “Encyclopedie” nin matematik maddelerinin hemen -hemen tümünü DAlembert yazmıştır. Bu eser Fransız aydınlanmasının temel eserlerinden biridir.

Bu yüzyılın matematiği çeşitli, kapsamlı ve fikir yönünden zengindir. En önemli zaafları, kesinlik (rigor) eksikliği; yapılan işlerin, günümüzün standartlarına göre, yarım-yamalak, kusurlu ve eksik oluşudur. Matematiğin o zamanda erişmiş olduğu düzeyde başka türlü olabilir miydi, bilmiyorum.
1800-1900 Arası. 19. asır çok sayıda, matematiğe önemli katkıları olmuş, bilim adamın yaşadığı bir asırdır. Bunların her birini teker -teker ele alıp, onların neler yaptığını anlatmak, bu konuşma çerçevesinde mümkün değildir; ayrıca, buna bilgim de yetmez. Bunun yerine, bu asırda matematik nereden nereye geldi sorusuna cevap vermeye çalışacağım.
1800 lerin başında matematik derin bir kriz içindeydi. Bunun nedeni, Fermat (1636) dan beri türevin tanımında, ve türevin işe karıştığı bir çok yerde, sonsuz küçük (infinitesimal) kavramının kullanılması ve matematikçilerin bunu çok tutarsız bir şekilde kullanmalarıydı. Bu tarihlerde henüz limit kavramının olmadığını ve türevin limit vasıtasıyla değil, “sonsuz küçük” kavramı kullanılarak tanımlandığını burada belirtmem gerekir. Bu tutarsızlık çok eleştirilmiş, özellikle de düşünür-din adamı G. Berkley (1685-1753) nin matematikçilerin tutarsızlığını ortaya koyduğu 40 sayfalık bir eleştiri kitabı derin etki yapmış, bir çok matematikçinin meslek değiştirmesine ve matematiğe karşı tavır almalarına neden olmuştur. 1800 başında, fonksiyon kavramının, son yüz yıldır kullanıla gelmesine karşın, henüz doğru-dölek tanımlanmamış olması ve matematikçilerin fonksiyonu aynı şekilde anlamamaları da başka bir anlaşmazlığın ve karmaşanın nedeniydi. Yine,1800 lerin başında süreklilik ve fonksiyon serilerinin yakınsaklığı doğru-dölek anlaşılmamıştı; henüz düzgün süreklilik ve düzgün yakınsaklık kavramları ortada yoktu. Entegral kavramı türev kavramının tersi olarak görülüyordu; türevden bağımsız bir entegral ve entegrallenebilirlik kavramı yoktu. 1800 lerin başında, bugün matematiğin en önemli teorilerinden biri olan, kompleks fonksiyonlar teorisi henüz yoktu. Geometride, antik Yunan çağından kalma ve çok uğraşılan beş sorudan ( Bunların ilk dördü, geometrik çizim yaparak, 1) bir açıyı üç eşit parçaya bölmek. 2) Alanı verilen bir dairenin alanına eşit alanı olan bir kare çizmek. 3) Hacmi verilen bir küpün hacminin iki katına eşit hacmi olan bir küp bulmak; ve 4) bir dairenin içine, p sayısı asal olmak kaydı ile, hangi p ler için düzgün p-genler çizilebileceğini bulmak idi. 5. Soru, Öklid geometrisinin beşinci postulatı olan, “bir doğruya onun dışından bir ve yalnız bir paralel çizilebilir “ postulatının diğer dördünün sonucu olarak elde edilip-edilemeyeceği ) idi. Bu sorulardan hiç biri, 4 cü soru dışında, ki o da Gauss tarafından daha yeni çözülmüştü, çözülememişti. Cebirde, 5 ci dereceden polinomların köklerinin cebirsel ( köklü ifadelerle) çözülüp-çözülemeyeceği henüz bilinmiyordu. Cebirin grup, halka, cisim, vektör uzayı gibi hiçbir yapısı henüz ortaya çıkmamıştı. Matris ve vectör kavramları henüz yoktu ( 2 li ve 3 lü determinantlar 1680 lerden beri biliniyor). Cebirin temel teoremi olarak bilinen, DAlembert-Gauss Teoremi (“Her polinomun en az bir kompleks kökü vardır” diyen teorem) henüz ispatlanmamıstı. Matematiksel fiziğin ana teoremleri henüz ortada yoktu; differensiyel geometri, topoloji gibi konular henüz doğmamıştı.
1800 lerin başında matematiğin durumu kısaca bu idi. 1820 lerde, A. Cauchy (1789-1855) limit kavramını, bugünkü kullandığımız şekliyle, tanımlayıp, türevi, sürekliliği ve, sürekli fonksiyonlar için, entegrali, limit kavramı yardımıyla tanımlaması, analizi, sonsuz küçük kavramından kaynaklanan krizden kurtarmış ve daha sağlam temeller üzerine oturtulmasını sağlamıştır. Cauchynin çalışmaları sonucu, kompleks fonksiyonlar teorisi doğmuş ve, Cauchy, B. Riemann (1820-1866) ve K. Weierstrass (1815-1884) gibi asrın büyük matematikçilerinin çalışmalarıyla, matematiğin en temel teorilerinden birine dönüşmüştür.
G. Dirichletnin (1805-1859) 1830 larda fonksiyon kavramını bugün anladığımız manada tanımlaması matematiği başka bir kargaşadan kurtarmıştır. Bu da özellikle Fourier serileri hakkında tartışmaları sona erdirecek, Fourier serileri ile ilgili çalışmaları tekrar başlatacaktır. Fourier serileri Analizin gelişmesinde en önemli rolü oynayan, bir bakıma modern matematiğin doğuşuna neden olan, gerek uygulamaları ve gerekse de matematikteki merkezi konumu açısından, matematiğin en önemli konularından biridir.
Weierstrass ve öğrencilerinin çalışmaları sayesinde, 1850 lerden sonra, düzgün süreklilik, düzgün yakınsaklık gibi analizin vazgeçilmez kavramları ortaya çıkacak, fonksiyon serilerinin yakınsaklığı daha iyi anlaşılacaktır.
F. Gaussun (1777-1855) “ Cebirin Temel Teoremi, ya da DAlembert Teoremi” olarak bilinen teoremi ispatlaması bu asrın başka bir önemli olayıdır. Bu teorem bugün cisimler teorisinden spektral analize kadar bir çok teorinin temelinde olan bir teoremdir. Bütün zamanların en derin, en büyük bilim adamlarından biri olarak kabul edilen Gaussun, sayılar teorisi, differensiel geometri, matematiksel fizik ve astronomiye katkıları bu asrın en önemli çalışmaları arasındadır.
Bu asrın ve bütün zamanların en önemli matematikçilerinden biri olan Riemann kısa yaşamında, daha sonra her biri büyük bir teori olacak bir düzine konuyu başlatmış ya da onlara derin katkılar yapmış, matematiğe kavramsal bir bakış ve yaklaşım getirmiştir. Bunlardan bir kaçı: Riemann entegrali ve entegrallenebilirlik kavramı, Riemann yüzeyleri, Riemann geometrisi, differensiyel geometri, sayılar teorisi (Riemann hipotezi), kompleks analiz (Riemann yüzeyleri, Cauchy-Riemann denklemleri), cebirsel geometri, matematiksel fizik ve, daha sonraları topoloji ismini alacak olan, analysis situs tür.
Yine bu asırda, yukarıda sözü edilen, antik Yunan çağından kalma 5 sorunun beşi de çözülmüştür. 1. ve 3. soruların mümkün olmadığı bir Fransız matematikçisi olan Wentzel tarafından 1837 de ispatlandı. 2. sorunun mümkün olmadığı, Lindemannın 1882 de pi sayısının tranzantal bir sayı olduğunun ispatından sonra anlaşıldı. 4. soru, yukarıda da söylendiği gibi Gauss tarafından 1796 da (p=17) için ve 1801 de de diğer p ler için tam olarak çözüldü. Cevap şudur: p bir asal sayı olsun. Verilen bir dairenin içine bir düzgün p-genin çizilebilmesi için gerek ve yeter koşul p nin p=2^n+1 ve n=2^k şeklinde olmasıdır. ( k=0 için, p=3 dür; k=1 için p=5, ve k=2 için p=17 dir). Bir dairenin içine düzgün bir beşgenin çizilebileceğini Öklid biliyordu; 7-gen çizilemeyeceğini Arşimed biliyordu. Arşimedden 1800 yılları arasında geçen 2000 yılda bu soruda hiçbir ilerleme sağlanmamıştı; bu sorunun çözümü için Gaussun dehası gerekiyordu.
Öklid in 5. postulatına gelince, bu sorunun çözümü için insanların, “mantıki tutarlılık” ile “fiziki olurluluğun” aynı şey olmadığını anlamaları gerekiyordu. 5. postalatın yerine onun zıtları olan postulatlar koyarak, Öklid geometrisi kadar tutarlı, iki yeni geometri oluşturulabileceği Lobachevki (1792-1856), Bolyai (1802-1860), ve Riemann tarafından gösterildi.
Cebir cephesine gelince, genç yaşta bu dünyadan ayrılan iki matematikçi, H. Abel (1802-1829) ve E. Galois (1811-1832) nın 5. dereceden polinomların cebirsel yöntemlerle köklerinin bulunup-bulunamayacağı konusunda çalışmaları sonucu grup teorisi doğdu. Kummer (1810-1893) ve öğrencilerinin Fermatnın büyük teoremiyle ispatlamak için verdikleri uğraşı sonucu halka teorisi ve idealler teorisi; R. Dedekind (1831-1916) gerçel sayıların soyut bir tanımını vermek için yaptığı çalışmalar sonucu, cisim teorisi; Cayley (1821-1895 ) ve Sylvesterin (1814-1897 ) çok sayıda doğrusal denklemi tek bir denklem olarak göstermek ve çözmek için yaptıkları çalışmalar sonucu matris cebiri; ve Grassman (1809-1877 ) nın üç boyuttan çok boyuta geçme çabaları sonucunda da vectör uzayları doğdu. Bu kavramlar matematiğe yapısal (= stuructualist) yaklaşımı ve bakış açısını getirecektir.
Bu dönemi, 1700-1900 arasını, matematikte büyük ilerlemelerin olduğu, çok sayıda yeni teorinin doğduğu, yapısal değişikliklerin olduğu, ispatlarda kesinliğin ön plana çıktığı, kavramsal bakış açısının hesapsal yaklaşımın önüne geçtiği bir dönem, matematiğin altın çağı, olarak özetleyebiliriz.
Altın çağ bir krizle kapandı. Bu kriz yeni bir çağın doğum sancılarıydı. Bu çağ modern matematik çağıdır. Bundan sonraki kısımda, bu krizin nedenleri ne idi; modern matematik nedir, nasıl doğdu, ne yönde gelişti; bunları anlatmaya çalışacağım.
5-Modern Matematik Dönemi. Kümeler teorisinin, dolaysıyla, modern matematiğin, babası Georg Cantor (1845-1918) dır. G. Cantor Berlin üniversitesinde, Kummerin ögrencisi olarak sayılar teorisinde tezini bitirdikten sonra, 1869 dan itibaren meslek hayatının sonuna kadar çalışacağı Halle üniversitesinde işe başlamıştır. Halle üniversitesinde çalışmaya başladığı yıllarda, o üniversitenin hocalarından, E. Heinenın Cantora sorduğu bir soru Cantorun yaşamını, matematiğin de seyrini değiştirecekti. Bu soru şu idi: Bir periodluk bir aralıkta, toplamı sıfır olan bir trigonometrik serinin katsayılarının hepsi sıfır mıdır?
Cantor bu soruyla uğraşırken gerçel sayıların o güne kadar fark edilmeyen bir özelliğinin farkına varır. Bu da rasyonel sayılarla irrasyonel sayıların aynı çoklukta olmadığıdır. Başka bir ifadeyle, rasyonel sayıların kümesiyle irrasyonel sayıların kümesi arasında, her iki kümenin de sonsuz olmasına karşın, bire-bir bir dönüşüm yoktur. O halde bu iki kümenin sonsuzlukları aynı değildir. Böylelikle ortaya küme kavramı ve kümelerin, içerdikleri eleman çokluğu açısın







"Sponsorlu Bağlantılar"

 
"Sponsorlu Bağlantılar"



  #2  
Alt 19-09-2009, 02:01
 
Standart Cevap: Matematiğin Tarihi

Matematik

MATEMATİK, çok eski zamanlardan beri insanların en çok yararlandığı konulardan biri olmuştur. Eski Mısırlılar ve Babilliler matematiği takvim düzenlemek için kullanıyorlar, böylece ekinlerini ne zaman ekeceklerini ya da Nil Irmağı'nın ne zaman taşacağını önceden kestirebiliyorlardı. Alışverişlerde ve hesapların tutulmasında aritmetikten, tarlaların sınırlarını belirlemek, piramitleri ve benzeri anıtları inşa etmek için geometriden yararlanılıyordu.
O tarihlerden başlayarak matematik bilgisini kullananların sayısı sürekli arttı, matematik bilginleri matematiği daha da geliştirdiler. Bunun sonucunda bu bilim dalının uygulandığı alanların sınırları gittikçe genişledi. Yüksek hızlı, elektronik bilgisayarların geliştirilmesiyle hesaplamalar için gereken süreler çok kısaldı ve matematiğin kullanımı büyük gelişme gösterdi.

Astronomi ölçümleri ve zamanın belirlenmesiyle ilgili hesapların doğruluk derecesi arttıkça, denizcilik ve haritacılık da gelişti. Böylece, Kristof Kolomb'dan bu yana insanlar yeni toprak parçaları keşfetmek için anayurtlarından çok daha uzaklara gidebildiler. Zaman içinde matematik daha iyi gemilerin, lokomotiflerin, otomobillerin ve sonunda da uçakların tasarımı için kullanıldı. Radar sistemlerinin tasarımında, Ay'a ve bazı gezegenlere roket gönderilmesinde de matematikten yararlanıldı.

Günlük Yaşamda Matematik

Denizde, havada ve karada yol alırken en önemli sorun nerede bulunduğunuzu belirle¬mektir. Bazen bunu söylemek çok kolaydır. Örneğin bir gemidesiniz ve tam kuzeyinizde bir deniz feneri, tam doğunuzda da bir kayalık görüyorsunuz. Bu durumda, tam olarak nerede olduğunuzu söyleyebilir ve haritada yerinizi kesin olarak belirleyebilirsiniz. Ama diyelim ki, radarınız A noktasından 30 km, B noktasından 35 km uzakta olduğunuzu gösteriyor ve haritaya baktığınızda A ile B arasındaki uzaklığın 50 km olduğunu görüyorsunuz. Bu durumda yerinizi nasıl saptarsınız?

Matematikçiler bir noktanın uzaydaki yerini belirlemek için birçok yöntem bulmuşlardır. Fransız matematikçi Descartes'ın 17. yüzyılda bulduğu yöntem bunlardan en çok kullanılanıdır. Descartes, biri x ekseni, öbürü y ekseni olmak üzere önce birbirine dik iki eksen çizdi

eri bu eksenlere göre 5 ve 3 sayılarıyla verilen bir noktayı bulmak için, eksenlerin kesiştiği noktadan başlanır; x ekseni boyunca 5 birim gidilir, sonra da y eksenine paralel olarak 3 birim yukarı çıkılır

Benzer biçimde siz de, şekil 3'te olduğu gibi (4,2), (3,1) ve (2,0) sayılarıyla verilen noktalan bulabilirsiniz.

Bu dört noktanın bir doğru üzerinde bulunduğunu fark etmişsinizdir. Eğer her nokta için verilen iki sayıyı (x ve y sayılarını) ele alırsanız, her noktada, bunlardan birincisinin ikincisinden 2 fazla olduğunu da görebilirsiniz. Bir başka deyişle, x sayısı y sayısından 2 fazladır ve biz bunu, x = y + 2 biçiminde yazabiliriz. Bu eşitlik, ele aldığımız noktalar kümesinin denklemidir.
Ticarette kullanılan matematik Babilliler' den bu yana çok daha karmaşık bir hale geldi. Örneğin, büyük bir mağazadan ayakkabı aldığınızda, satış elemanının sattığı malı bir karta işlediğine dikkat etmişsinizdir. Bu kart, ayakkabının numarası, modeli, satış tarihi ve hangi mağazadan satıldığı gibi bilgileri kapsayabilir. Kart, mağazanın bağlı olduğu şirketin genel merkezine gönderilecek ve içindeki bilgiler bilgisayara işlenecektir. Bilgisayara her gün bu türden pek çok kart işlenir. Bilgisayar bu kartlardaki bütün bilgileri çözümleyerek, satışların mağazalarda ayakkabı model ve numaralarına göre dağılımına ilişkin bilgileri üretir. Bu bilgilerden yararlanılarak, stoklarını yenilemeleri için mağazalara ayakkabı gönderilebilir ve yöneticiler hangi modellerin da¬ha çok satıldığını bilebilir. Bilgisayar ayrıca, bir mağazalar zincirinin karmaşık muhasebe kayıtlarını da tutabilir.

İşletme yöneticileri her zaman işlerinin nasıl gittiğini bilmek isterler; işteki gelişmeyi göstermenin en basit yolu bir grafik çizmektir:

1982 1983 198419851986

Bu grafik, bir şirketin yıllık kârlarının 1982 ile 1986 arasında nasıl değiştiğini göstermektedir.
İş yaşamında başka tür bilgiler de yararlı olabilir; matematiğin istatistik olarak adlandırılan dalı, bu tür bilgileri aşağıdakine benzer grafikler yardımıyla sağlar:
Bu grafik, 11 yaş grubundan çocukların ayakkabı numaralarını göstermektedir. Ayakkabı üretiminde örneklem tekniklerinden yararlanılır. Bir ülkedeki insanların ayakkabı ölçülerinin hangi numaralar arasında değiştiği ve nüfusun yüzde kaçının hangi numara ayakkabı giydiği doğruya oldukça yakın biçimde öğrenilebilir. Belirli bir yaş grubundan çocukları kapsayan bu grafikte olduğu gibi, ülke nüfusunun büyük çoğunluğu "ortalama" büyüklüklerde ayakkabı giyer; çok büyük ve çok küçük numaralı ayakkabı satın alan pek az kişi vardır. Bu bilgilerden yararlanan imalatçılar, hangi numaralardan kaçar çift ayakkabı imal etmeleri gerektiğine karar verebilirler. Mağazalar da depolayacakları numara ve miktarları saptayabilirler. Gerçekten de mağazaların çoğunda çok büyük ya da çok küçük numaralı ayakkabılar bulunmaz; çünkü bunlara olan talep çok azdır. Onun için, ileride ayaklarınız çok büyürse ya da böyle çok küçük kalırsa, uygun ayakkabıyı bulmakta güçlük çekeceksiniz demektir. (Ayrıca bak. İSTATİSTİK.)
İstatistik bir bakıma, gelecekte olacaklara ilişkin tahmin'de bulunmaya yöneliktir. Bugün ayakkabı talebine ilişkin olarak yapılan tahminlerin önümüzdeki birkaç yıl için geçerli olacağı kabul edilebilir. Hava tahminleri, hava sistemlerinin o andaki durumuna bakarak ve bu durumun ne kadar süreceğine ilişkin hesaplar yaparak gerçekleştirilir. Uzun vadeli hava tahminlerinde ise, daha önce tanık olunmuş benzer sistemlerle karşılaştırılan karmaşık hava sistemlerine ilişkin ayrıntılı bilgisayar çözümlemelerinden yararlanılır.

Ama geleceğin önceden kestirilmesi bu kadar basit değildir. Nolandiya adındaki hayali bir ülkenin nüfusu sürekli olarak artmaktaydı ve hükümet, okul binası yapımında, öğretmen yetiştirmede ve benzeri konulardaki kararlarını, çocuk nüfusunun sürekli bu hızla artacağını varsayarak almıştı. Ama 1970'lerin başlarında, Nolandiya'da doğum oranı birdenbire düşmeye başladı ve bir öğretmen fazlalığı ortaya çıktı.

Basit Şaşırtmacalar
Çok basit durumlarda bile bazen daha sonra ne olacağını söylemek zordur. Bir kâğıt sayfasını bir bölge olarak kabul edersek, bu sayfayı kesen bir doğru çizdiğimizde kâğıdı iki bölgeye, bir çizgi daha çizdiğimizde dört bölgeye ayırmış oluruz:
Diyelim ki, bir üçüncü çizgi daha çizdik; en çok kaç bölge elde edebiliriz? Şu ana kadar, sırasıyla 1, 2, 4 bölge elde etmiştik. Şimdi kaç bölgemiz olacağını söyleyebilir misiniz?
Sayıların bu gidişi bizi şaşırtabilir ve her se¬ferinde bölge sayısının ikiye katlandığını sanabiliriz. Ama gerçekte, üçüncü çizgi çizildiğinde ortaya çıkacak bölge sayısı sekiz değil, en çok yedidir:

Bu durum karşısında, bölge sayılarının artışı konusunda değişik bir kural düşünmek zorundayız: 1, 2, 4, 7,...

Biraz daha karmaşık bir örnek olarak, aşağıdaki durumu ele alalım. Bir daire ve bu dairenin çemberi üzerinde iki nokta alıp bunları bir doğruyla birleştirelim. Çizdiğimiz doğru, daireyi iki bölgeye ayırır. Şimdi çember üzerinde bir başka nokta seçelim ve bunu daha önceki noktalarla birleştirelim; bölge sayısı ki katına çıkar:

Sonra dördüncü bir nokta seçelim ve çizeceğimiz doğrularla bunu da daha önceki noktalarla birleştirelim. Bölge sayısı gene iki katına çıkar:
Beşinci noktayı ekledikten sonra da aynı şey olur ve bölge sayısının gene iki katına çıktığını görürüz. Bu son derece açık artış biçimi karşısında, bunun böyle süreceğini ve ekleyeceğimiz her noktayla bölge sayısını iki katına çıkarabileceğimizi rahatlıkla düşünebiliriz. Ama, altıncı bir nokta eklediğimizde, 32 değil yalnızca 31 bölge elde edebiliriz! Bu durumda ortaya çıkan sayılara uygun değişik bir kural bulabilir misiniz?
2, 4, 8, 16, 31,...

Kuramsal ve Uygulamalı Matematik
Ele aldığımız bölge problemleri, yaşantımızla doğrudan ilişkili olmadığından "yararlı" bulunmayabilir; ama matematikçiler her zaman matematiğin ne işe yarayacağını düşünmezler. Nasıl bazı kişiler bulmaca çözmeyi severlerse, matematikçiler de problemlerle öyle uğraşırlar. Matematikçiler iki gruba ayrılabilir: Uygulamalı matematik alanında çalışarak mühendislik, bilim, teknoloji, ticaret problemlerini çözmeye uğraşanlar ve matematiğin yalnızca kendisiyle ilgili bir dalı olan kuramsal matematik alanında çalışanlar. Tüm matematik tarihi boyunca kuramsal ve uygulamalı matematik birbirinden destek almıştır.

Örneğin, Eski Mısırlılar ve Babilliler kenar uzunlukları 3, 4 ve 5 birim olan bir üçgenin iki kısa kenarı arasındaki açının dik açı (90°) olduğunu belirlemişlerdi. Mısırlılar, üzerine düzgün aralıklarla düğüm atılmış olan bir ipi cetvel olarak kullanmışlar ve kenarları 3, 4 ve 5 birim uzunluğunda olan bir dik üçgeni elde edebilmek için bu ipten yararlanmışlardı:

Mısırlılar, o görkemli piramitleri ve sarayları işte bu basit aletlerle yapmışlardır.
Ama Mısırlılar, kenar uzunlukları 3, 4, 5 birim olan bir üçgenin niçin bir dik üçgen olduğu sorusunu hiç sormamışlardı. Buna karşılık Eski Yunanlılar daha çok bu tür konular üzerinde durdular. Yunanlılar "3, 4, 5" üçge¬nini biliyorlardı; ayrıca, seramik yer karolarının desenlerinde başka dik üçgenlerin bulunduğunu da görüyorlardı:

Yukarıdaki karo çiziminde, kenarları maviyle belirtilmiş büyük karedeki üçgen sayısının iki küçük karedekilerin toplamı kadar olduğunu göreceksiniz. Bu, büyük karenin alanının öbür iki karenin alanlarının toplamına eşit olduğu anlamına gelir. Söz konusu eşitlik "3, 4, 5" üçgeni için de geçerlidir:

Eski Yunanlılar bunun, kenarları hangi uzunlukta olursa olsun, bütün dik üçgenler için doğru olduğunu buldular. Bunu ilk kanıtlayanın Öklit olduğu sanılır (bak. ÖKLİT); ama bu kanıt matematik tarihinde Pisagor teoremi olarak anılır (bak. PİSAGOR).

Üçgenler ve Kareler
Pisagor teoremi geometrideki ölçümlerin temelini oluşturur ve belki de bugüne kadar elde edilmiş olan en yararlı sonuçlardan biridir. Diyelim ki, 12 metre yüksekliğindeki bir bayrak direği, tepesinden uzanan ve dibinden 5 metre uzaklıktaki bir noktada yere bağlanan bir telle sağlamlaştırılmak isteniyor. Telin uzunluğu kaç metre olmalıdır?

5 m
Problem, Pisagor teoreminden yararlanılarak çözülebilir: Ortaya çıkan dik üçgenin dik kenarları üzerindeki karelerin alanları 12: ve 52'dir; bunların toplamı
122+5:= 144+25= 169
olur. Bulunan bu sonuç, telin oluşturduğu kenar üzerindeki karenin alanıdır ve 132=169 olduğundan, telin de 13 metre uzunluğunda olması gerektiği kolayca görülebilir.
Bu anlatılanlardan, Mısırlılar için yalnızca pratik geçerliliği olan bir problemin, Yunanlılar için nasıl bir "bulmaca" oluşturduğunu görmüşsünüzdür. Yunanlılar'ın bu "bulmaca" üzerinde düşünerek buldukları çözümün y.a da vardıkları sonucun o günden bugüne uygulamada ne büyük önem taşıdığı da bu örnekten kolayca anlaşılabilir.

Karekökler
169, 13'ün karesidir; öyleyse 13 de 169'un karekökü'dür. Pisagor teoremini kullanabilmek için önce karekökleri bulmak gerekir. 169'un karekökünü bulmak kolaydı; ama, kısa kenarları l'er birim uzunluğunda olan bir dik üçgenin uzun kenarının kaç birim olduğunu nasıl bulursunuz?
1,4 de küçük olduğuna göre, 1,4 ile 1,5 arasın¬da bir sayıyı, örneğin 1,45'i deneyin:
1,452=2,1025
büyük büyük büyük küçük!
Bu da 2'den büyük; öyleyse 1,44'ü denemelisiniz:
1,442=2,0726 1,432=2,0449 1,422=2,0164 1,412=1,9881

1
1
Büyük karenin alanı, öbür ikisinin alanlarının toplamına eşit olmalıdır:
l'+l2=l + l=2.
Ama 2'nin karekökü hangi sayıdır?
Matematikçilerin temel uğraşılarından biri, buna benzer sorulara yanıt aramaktır; nitekim karekök almak için bugüne kadar birçok yöntem geliştirmişlerdir. Günümüzde bu sorun karekök düğmesi olan bir elektronik hesap makinesiyle kolayca çözülebilir: Önce "2"ye, sonra "V " işaretinin bulunduğu düğmeye basar ve 1,414213 gibi bir sonuç okuruz.
Eğer hesap makinenizin karekök düğmesi yoksa, o zaman 2'nin karekökünü tahmin eder ve bu tahmininizi makineyle kontrol edebilirsiniz. Tahmininiz doğruysa, denediğiniz sayının karesi, yani kendisiyle çarpımı 2'yi vermelidir. Diyelim ki, 2'nin karekökünün 1,5 olduğunu tahmin ediyorsunuz; bu sayının karesini aldığınızda
1,52=2,25
bulacaksınız. Demek ki, 1,5 aradığınız sayıdan büyüktür; öyleyse 1,4'ü deneyin:
1,42=1,96
Demek ki, aradığımız sayı 1,41 ile 1,42 arasında olmalıdır. Bu yolu izleyerek her seferinde 2'nin kareköküne biraz daha yaklaşırız; bu işlem bir cep hesap makinesiyle kolayca yapılabilir. Doğru yanıta gittikçe daha fazla yaklaşabilmeyi sağlayan bu yönteme yinelemeli yöntem denir. Bu tür yöntemler, sonucu bir saniyeden çok daha kısa sürede hesaplayabilen bilgisayarlar için uygundur.

Ondalık Sayılar
Gündelik yaşamda, bir sayının karekökünü 2. ya da 3. ondalık basamağına kadar hesapla¬mak genellikle yeterlidir. Örneğin, metreyle ölçüm yaparken, milimetre basamağının öte¬sinde bir kesinliği pek aramazsınız. Ama matematikçiler, gitgide daha çok ondalık basamağa doğru ilerlediğinde sonucun ne olacağı¬nı merak ederler.
Vi'yi bir ondalık sayıya çevirirsek 0,5 elde ederiz. Bunu elde ederken ya
V2 = 5/W
olduğunu biliriz ya da Vi'nin
'/2=İH-2
biçimindeki bir bölme işleminin sonucu oldu¬ğu gerçeğinden hareket ederiz. Gerçekten de l'i 2'ye böldüğümüzde {bak. ONDALIK SAYI¬LAR) sonuç 0,5'tir:
2
1
0,5
Benzer biçimde 5/8=0,625'i de hesaplayabi¬liriz:
8
0,625
Bazı kesirleri birkaç ondalık basamaktan öte¬ye yürütemeyiz, çünkü "kalan" olmaz. Ama 3/7'yi ondalık sayıya çevirmeyi denersek, ortaya garip bir sonuç çıkar: bir kez döndüğünde bisikletin 3x60 santimetreden, yani 180 santimetreden biraz daha fazla yol aldığını gösterir.


0,4285714
3,0000000 28
20 14 60 56 40 35 50 49 10 7
30 28

Rakam dizisi yeniden 4'le başlar ve 428571'i oluşturan altı rakamlık dizi, aynı sırayla defalarca yinelenir. Buna yinelenen ondalık denir ve yinelenen rakam dizisini göstermek için, dizinin ilk ve son rakamı üzerine birer nokta konur. Örneğimizi bir de bu biçimde yazalım:

3/y=0,42857İ.
Bu tür kesirlerden bazılarının yinelenen ondalıkları çok uzundur:
V6i =0,0163934426229508196721311147540 983606557377049180327868852459

Sonsuz Sayılar
Aslında bütün bayağı kesirler, ondalık sayı bi¬çiminde yazıldığında ya belirli bir ondalık ba¬samağında son bulur ya da basamakları belirli rakam dizileri halinde yinelenip gider. Ama, bu iki örneğe uymayan sayılar da vardır; bunlar ondalık kesir olarak yazıldığında, ondalık basamakları herhangi bir noktada son bulmaksızın ya da belirli rakam dizileri halinde yinelenmeksizin sürüp gider. 2'nin karekökü bu tür sayılardan biridir.
Sonu olmayan bir başka ondalık kesir de, Yunan alfabesinde n (pi) harfiyle gösterilen sayıdır. Herhangi bir dairenin çevre ve çap uzunluklarını ölçerseniz, çevrenin çapın üç katından biraz daha uzun olduğunu görürsü¬nüz. Bu, 60 cm çapındaki bir bisiklet tekerleği

Tarih boyunca insanlar 77 sayısı için çeşitli yaklaşık değerler kullanmışlardır. Kudüs'teki Süleyman Tapınağı'nı yapan İbraniler için TT sayısını 3 olarak almak yetiyordu. Babilliler ?r'yi 3Vs, Mısırlılar ise 313/8i olarak aldılar. Es¬ki Yunanlı matematikçi ve bilim adamı Arşimet (bak. ARŞİMET), 77'nin 3lü/7i ile 3V7 arasın¬da olduğunu buldu. 1573'te bulunan ilgi çekici bir başka yaklaşık değer de
355/113
idi. Aslında 7r'nin ilk birkaç ondalık basamağı
3,14159265...
biçimindedir ve uygulamada bunu 3,14 olarak almak genellikle yeterli olur. Ama yalnızca merak nedeniyle, matematikçiler 1949'dan beri 77'nin daha çok ondalık basamağını hesap etmek için bilgisayar programları geliştirmişler ve 1981'de Japonya'daki bir bilgisayar 2 milyonuncu ondalık basamağı bulmuştur.

Kuşkusuz gündelik yaşamda ve çeşitli bilim dallarında büyük önemi olan sayılar kendi başlarına da çok ilgi çekicidir ve matematiğin sayılar kuramı ya da yüksek aritmetik olarak adlandırılan dalı bütünüyle sayıları ve sayıların özelliklerini konu alır


  #3  
Alt 19-09-2009, 02:02
 
Standart Cevap: Matematiğin Tarihi

Tam Kare Sayılar
Sayıların ilginçliğini görmek için tam kare sayıları inceleyebiliriz:
1, 4, 9, 16, 25, 36,...
Tam kare sayılar, tamsayıların "karesi alınarak" bulunur: ı2=ı
22=4 32=9 vb.
Tam kare sayılardan "kareler" de yapabiliriz:
O O O O
o o o o o o o
oooo ooo oo
oooo ooo oo o
Ardışık tek sayılar toplanarak da tam kare sayılar elde edilebilir: 1 = 1 4=1+3 9=1+3+5 16=1+3+5+7
Eğer ardışık çift sayıları toplarsak, bir tam ka¬re sayı ile onun karekökünün toplamı elde edilir:
2= 2= 1 + 1 = 12 + 1 2+4= 6= 4+2=22+2 2+4+6=12= 9+3=32+3 2+4+6+8=20=16+4=42+4
Tam kare sayıların son rakamları
1, 4, 9, 6, 5, 6, 9, 4, 1, 0,...
biçiminde gider ve hiçbir tam kare sayı 2,3,7 ve 8'le bitmez.
Noktalar belirli bir kural içinde düzenlenerek değişik kareler elde edilebilir:
O
o OOO
O OOO OOOOO
OOO OOOOO OOOOOOO
O OOO OOOOO
O OOO
O
Bu karelerdeki nokta sayısının (5, 13, 25,... vb), ardışık tam kare sayıların toplamına eşit olduğu görülecektir:
5 = 1+4 13=4+9 25=9+16
Bunu, aşağıdaki karelere bakarsak daha iyi kavrayabiliriz:
O
O O O
O O O OOO
OOOOOOOOO
O O O OOO
o o o
o
25 aynı zamanda bir tam kare sayı olduğu için, son eşitliği
52=32+42
biçiminde yazabiliriz. Bu bize, kenar uzunlukları 3, 4 ve 5 birim olan üçgene uyguladığımız Pisagor teoremini anımsatmaktadır. Ke¬nar uzunlukları tamsayılarla ifade edilebilecek başka dik üçgenler bulmak da çok ilgi çekicidir. Bu, iki tam kare sayının toplamı olan başka tam kare sayıları bulmak demektir. Bayrak direği örneğimizde böyle bir sayıyla karşılaşmıştık:

132=52+122
Genellikle yapıldığı gibi bu üç sayının yerine x, y ve z harflerini kullanırsak, bu eşitliği şöyle yazabiliriz
z2=x2+y2.

Harfler, Kurallar ve Fonksiyonlar
Sayıların ya da başka şeylerin yerine harflerin kullanılması, matematik kurallarını tanımla¬yabilmek için iyi bir yoldur. Cebir öğrenmeye başlayanlar bunu bilirler (bak. CEBİR). Örne¬ğin, tam kare sayıların hangi sayıların karesi olduğunu
1 U 1 2^ 4 3U 9 4^ 16
biçiminde gösterirsek, "kare alma"nın kuralını biçiminde yazabiliriz; burada x herhangi bir sayıyı gösterir. Verilmiş sayılarla ne yapılacağını gösteren kurala fonksiyon denir. Fonksiyon konusu, matematiğin analiz denen dalını oluşturur (bak. FONKSİYON).

Fonksiyonları göstermenin bir yolu, Descartes'ın yukarıda ele aldığımız grafik yöntemini kullanmaktır. Fonksiyonun kapsadığı her sayı çiftini bir nokta olarak gösterebiliriz. Örneğin, "kare alma" fonksiyonu için, 1 -* 1, 2 —» 4, 3 —> 9 olduğundan, bunları sayı çiftleri halinde
(1,1), (2,4), (3,9),...
biçiminde yazabilir ve bu sayıların grafiğini çizebiliriz:

/

0 ^> 0 (sıfırın karesi sıfır) olduğuna göre, (0,0) sayı çifti de bizim aradığımız bir başka nokta¬yı belirler. Tamsayılar arasında kalan kesirli sayıların da karelerini alabiliriz:
(V2f=V4
(l1/2)2=21/4 (2'/2)2=61/4
Daha çok noktayı işaretlediğimizde grafikte, bir eğri belirmeye başlar.
Kare alma fonksiyonumuzu tersine çevirebilir ve böylece bir karekök alma fonksiyonu elde edebiliriz:
x —* \rx~.
Bir hesap makinesi yardımıyla sayıların kare-kökleri ilk ondalık basamaklarına kadar bulu¬nabilir. Böylece elde edeceğimiz sayı çiftlerini, şekil A'da görüldüğü gibi bir grafik üzerinde gösterebiliriz:

1 -> 1

Bu gösterime bakıldığında, doğal sayı kadar çift sayı olduğu düşünülebilir. Oysa
1, 2, 3, 4, 5, 6,...
dizisinden de görülebileceği gibi, her iki doğal sayıdan yalnızca biri çift sayıdır. Bu durumda da doğal sayıların yarısı kadar çift sayı varmış gibi gözükmektedir! Bu ilginç çelişkinin sırrı, sonsuz sayıda doğal sayının olması, yani doğal sayıların sonsuza kadar sıralanıp gitmesidir. Sonsuzluk kavramı üzerinde duran ilk matematikçi Alman Georg Cantor'du (1845-1918).

Sonsuzluk kavramı eski bir kurbağa bilmecesine dayanır. Dairesel bir havuzun tam ortasında bulunan bir kurbağa havuzun kenarına ulaşmak niyetindedir; ama bunun için bir koşulumuz vardır: Kurbağa ilk sıçrayışında, havuzun merkezi ile kenarı arasındaki uzaklığın yarısı, ikinci sıçrayışında aynı uzaklığın dörtte biri, üçüncüsünde sekizde biri kadar yol alacak, yani her sıçrayış bir öncekinin yarısı kadar olacaktır. Eğer havuzun yarıçapı bir metreyse, kurbağanın sıçraya sıçraya giderken almış olduğu yolu, yani ulaşabileceği herhangi bir noktanın havuzun merkezine olan uzaklığını bulmak için, her sıçrayışın uzunlu¬ğunu metrenin kesirleri olarak tek tek yazıp toplayalım:
l^ + 1/4 + 1/8 + 1/l6-|-1/32...
Kurbağa havuzun kenarına ulaşabilecek midir?
Kurbağanın her sıçrayışta hangi uzaklığa ulaşacağını tek tek hesaplarsak, ortaya şöyle bir sonuç çıkar:
l/2=l/2 1/2+'/4 = -y4 1/2+1/4+I/8 = % 1/2+1/4+1/8+'/l6=1-yi6
vb.
Kurbağanın her sıçrayıştan sonra daha ne kadar yolu kaldığına bakarsak, şu sonucu bu¬luruz:
'/2, '/4, V8, Vl6, '/32,...
Kurbağanın her sıçrayışında, gideceği yol yarıya inmektedir. Ama ne kadar sıçrarsa sıçrasın, geriye hep alması gereken bir yol kalmakta, yani her seferinde havuzun kenarına biraz daha yaklaşmakta, ama bir türlü ulaşamamaktadır! Bu, 2'nin karekökünü ya da zr'nin değerini ondalık sayı halinde tam olarak yazamamaya, yalnızca yaklaşık bir değer elde et¬meye benzeyen bir durumdur. Matematiğin analiz denen dalı sonsuzluk kavramıyla da il¬gilenir; analizin integral yöntemiyle bu kavrama nasıl ulaşıldığı DİFERANSİYEL VE İNTEGRAL HESAP maddesinde açıklanmıştır.

Sonsuzluk kavramı geometride de karşımıza çıkar. Bir düzgün beşgeni ele alalım:

Eğer bu beşgenin bütün köşegenlerini çizersek, ortasında yeni bir beşgen oluşur. Bu küçük beşgenin de köşegenlerini çizdiğimizde, bu kez ortada daha da küçük bir beşgen ortaya çıkar.
Bunu, kuramsal olarak dilediğimiz kadar yineleyebilir, gittikçe daha küçük beşgenler elde ederek sonsuza kadar sürdürebiliriz.


Cevapla

Hızlı Cevap
Mesajınız:
Kullanıcı isminiz: Giriş yapmak için Buraya tıklayın
Rastgele Soru

Seçenekler


Seçenekler


Benzer Konular
Matematiğin Doğuşu Matematik bir keşif midir, Yoksa bir icat mı? Keşfetmek ve icad etmek kelimelerinin öncelikle ne anlama geldiğini düşünmeliyiz. İcad etmek bir sistemi yoktan var etmek,...
Matematiğin Sevgi İfadesi Matematiğin Sevgi İfadesi :):) || http://img237.imageshack.us/img237/4144/parsekil05.gif Sen pi sayısı kadar sonsuzsun. Çarpanlara ayrılmayan denklem gibisin. Senden mesaj almak...
Matematiğin Aydınlık Dünyası Matematiğin Aydınlık Dünyası Kitapta tamamen matematiğin günlük yaşantımızdaki önemi vurgulanmaktadır. Matematik akademisyenlerin loş koridorlarında birbirlerinin kulağına fısıldadığı...
Matematiğin Sırları Matematiğin Sırları: http://www.paradokslar.com/matematiks/iconflash.gifp (pi) Sayısı: Kısaca bir dairenin çevresinin çapına oranı, p sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri...
Matematiğin Faydalarına Dair: Matematik aklı ve fikirleri geliştirir(İbn Haldun). Doğru hüküm vermeyi sağlar. Doğru akıl yürütmeyi öğretir. Eleştirici yollardan düşünme yeteneğini kazandırır. Müspet düşünce...

 
Forum Stats
Üyeler: 65,696
Konular : 237,481
Mesajlar: 424,386
Şuan Sitemizde: 255

En Son Üye: furkan taşhan"

Sosyal Linkler
Lütfen Facebook Sayfamızı Beğenin



Twitter Butonları





Google+ Butonu



Lütfen Google+ Sayfamızı Çevrenize Ekleyin


Sponsorlu Bağlantılar







Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 02:58.


Powered by vBulletin® Version 3.8.2
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.

DMCA.com

Sitemizde illegal paylaşım yasaktır.Sayfalarımızda bulunan içeriklerin telif haklarıyla ilgili bir şikayetiniz/sorunuz varsa bize ulaşmak için TIKLAYINIZ .
In this web site,illegal sharing is forbidden.If you have any problem/complaint about content's copyrights in our page,please click here to contact us.